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ABSTRACT:
Associationrule mining is oneof the most importantproceduresin datamining. In
industryapplications,oftenmorethan10,000rulesarediscovered. To allow manual
insepectionandsupportknowledgediscovery the numberof ruleshasto be reduced
significantlyby techniquessuchaspruningor grouping. In this paper, we presenta
new normalizeddistancemetric to groupassociationrules. Basedon thesedistances,
an agglomerative clusteringalgoritm is usedto clusterthe rules. Also the rulesare
embeddedin a vectorspaceby multi-dimensionalscalingandclusteredusinga self
organizingfeaturemap.Theresultsarecombinedfor visualization.We comparevar-
iousdistancemeasuresandillustratesubjectiveandobjectiveclusterpurity on results
obtainedfrom realdata-sets.

INTRODUCTION

Massive amountsof dataarebeinggeneratedandstoredevery day in corporatecom-
puter databasesystems.Mining associationrules [2] from transactionaldatais be-
coming a popularand importantknowledgediscovery technique[3]. For example,
associationrules(ARs) of retail datacanprovide valuableinformationon customer
buying behavior. Thenumberof rulesdiscoveredin a realdata-setcaneasilyexceed�����������

. To managethis knowledge,ruleshave to beprunedandgrouped,sothaton-
ly a reasonablenumberof ruleshave to be inspectedandanalysed.In this paperwe
proposeanew distancemetricbetweentwo ARs. andproposeanew groupingmethod-
ology usingmulti-dimensionalscaling(MDS) andself organizingmaps(SOMs). In
this paper, we proposea new distancemetric to clusterassociationrules(section2)
that improvesuponthemetricproposedin [8]. Basedon thedistancemetric,we pro-
posea new agglomerative clusteringtechnique(section3). Moreover, we embedthe
distancesusingmulti-dimensionalscalingandclusterthe resultingpoints into a Eu-
clideanspaceusinga Self OrganizingFeatureMap (SOM)(section4). We propose
a visualizationschemeto compareboth techniquesby color-codingtheSOM results
basedon theagglomerativeclusteringresults(section4). Figure1 depictstheoverall
processflow-diagramof ourproposedsystem.

DISTANCE METRICS

A Euclideandistancecould be definedon rule featuressuchassupport,confidence,
lift or the bit-vectorrepresentationof �	� . Thesedirect featuresarevery limited in
capturingthe interactionof ruleson thedataandcharacterizeonly a singlerule. One
way of defining distancebetweenrules is in termsof the overlap of their market-
baskets like the oneproposedin [8]. Oneproblemwith this metric is that it grows
as the numberof market-baskets in the databaseincreases.This can be corrected



by normalizing(divide the measureby the size of the database
 ��
 ). However, the
measureis still stronglycorrelatedwith support. High supportruleswill on average
tendto have higherdistancesto everybodyelse. This is an undesiredproperty. For
example,two pairsof rules,bothpairsconsistingof non-overlappingrules,mayhave
differentdistances.High supportpairshave a higherdistancethanlow supportpairs.
As an improvementto this metric, we proposea new distancemeasurebasedon a
conditionalprobabilityestimate,as

���� ��� ��� �	� ��� �	� � 
���� ��� �	� ���
(1)

� ��� 
 � � �	� � � �	� ��� 


 � � �	� � � 
"!#
 � � ��� �"� 
 � 
 � � �	� � � ��� �"� 


�
wheretheset �	� �

is theunionof itemsin the left andright handsidesof rule $ , and� �&%'�
is thesetof all transactionscontainingitemset

%
. We call

(�)� �
theConditional

Market-Basket Probability(CMPB) Distance.Ruleshaving no commonMBs areat a
distanceof 1, andrulesvalid for anidenticalsetof basketsareatadistanceof 0. Let us
call adistanceinterestingif it is neither0 nor1. Rulepairswith aninterestingdistance
arecalledgoodneighbors.In mostrealdatabases,themajorityof all rulepairsarenot
goodneighbors.Manualexplorationof a rule’s goodneighborsshowedthat intuitive
relatednesswascapturedverywell by thismetric.For example,rulesinvolving differ-
entitemsbut servingequalpurposeswerefoundto beclosegoodneighbors.Super-set
relationshipsof theitem-setsassociatedto therulesoftenleadto verysmalldistances.
Theaveragetime complexity for thecomputationof


is * �,+.-0/21 !43 15�

where
+

is thenumberof transactionsin thedatabase,
/

is theaveragemarket-basket sizein
numberof transactionsand 3 is thenumberof discoveredrules. Thememoryspace
complexity grows as * �6+ !73 1 �

. In mostcases,a sparsematrix representationfor 8
cancut down memoryrequirementssignificantly.

CLUSTERING

CombiningSOMclusteringresultswith DimensionlessAgglomerativeChainCluster-
ing developedby us resultsin a goodvisualizationinterface. The distancemeasure
describedin Section2 candirectly beusedfor Agglomerative Clusteringbut a SOM
needsavectorinput.

One possibility for obtainingan embeddingspacefor the rules is by defining a
binaryvectorfor eachrule with onebit per item to describeits presenceor absence.
But suchvectorsarevery sparsesincethe numberof different itemsrunsinto thou-
sands.Theapproachdoesnot seemvery attractive especiallyfrom thepoint of view
of training a neuralnetwork. Multi-DimensionalScaling[6] canbe usedto convert
the distanceinformation into an embeddedspacesuchthat the distanceinformation
betweenrulesis preserved.

Agglomerative Chain Clustering. WeproposeaChainingalgorithmthatdoesnot
useany coordinatesystemandfindstheclustersusingthedistancemeasuresonly. In
this algorithma point is joinedto its closestneighborfoundfrom thedistancematrix.
This processis appliedto all the points in the spaceand resultsin a collection of
graphs. All points joined togetheras a graphend up having the samelabel. The
algorithmreturnsthelabelsof all thepoints.A nicepropertyof thealgorithmis thatit
scalestheclustersizesdependinguponthedensityof thepointsin theneighborhood.



A more denseneighborhoodresultsin a smallermore compactclusterand a more
sparseregion of thespacereturnsa larger lessdensecluster. It canbeshown that the
resultantclustersareuniqueanddonotdependon thestartingpoint.

AgglomerativeChainClusteringperformsChainingat multiple levels. At theend
of thealgorithmwegeta treestructurethatdescribesthemultiple levelsof clustering.
It is similar to SingleLink Agglomerative Clustering[4] but differs in its bias. The
treereturnedis shorterandtheclustersmoreuniformly sized.Thealgorithmworksas
follows:

1. Performchainingon all thepointsandretrieveall theclusters.

2. Find thecentroidof eachcluster.

3. Formanew spaceof
+:9

pointsrepresentingtheclustercenters.

4. ;�< +=9
is greaterthan1 >@?BADC Goto Step1 A�E,FGA STOP.

An Agglomerative ChainedTreeis shown in Figure2. In this figure the heightof a
nodeis calculatedas the averagedistanceof the original pointsof the clusterfrom
thecentroid. This heightrepresentsthecompactnessof theclustersandis usefulfor
extractingclustersof comparablecompactnessfrom thetree.

Dimensionless Agglomerative Chain Clustering. This is the methodusedfor
clusteringAssociationRulesin this paper. It is a specialcaseof the Agglomerative
Chain Clusteringand allows us to clusterrules togethereven in the absenceof di-
mensionalinformation. The first level chainingperformsthe clusteringwithout any
information of the location of the points. To repeatthe chainingat the next level,
we only needthe distancebetweenclusters(centers)andnot the coordinatesof the
centersthemselves. Thesedistancescanbeestimatedusingmany differentmethods.
The methodis usedin this paperis a variationof the LanceandWilliams Flexible
Method[4]. Accordingto their method,the distancebetweena group H anda group� $�I �

formedby the fusion of groups $ and I satisfiesthe recurrenceformula for the
distancedefinedasfollows:
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where
��U�

is the distancebetweenthe groups $ and I and
M

, R and V areparameters
whosevaluesdependonthedefinitionof thecenterof clusters.By allowing R to vary,
clusteringschemeswith variouscharacteristicscanbeobtained;LanceandWilliams
suggestthatprobablythebestvalueto assumefor R is somesmallnegativevalue,and
in their examplethey usethevalue0.25. For centroidtheparameters

M
, R and V take

thefollowing values:
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For threepoints,theformulabecomes:
 J"K �]�^L_� ��`ba �6 J � !  J ��� �c��`bd�a  K ���eL

, where
 J"K �]�^L

representsthe distanceof point H from the centroidof cluster $�I . As we canseeit
is equalto theaveragedistanceminusone-fourththedistancebetween$ and I . This
distancemeasureis suitablefor the singlelink clusteringalgorithmdescribedby the
authorin [4].



In our clusteringalgorithmmorethantwo pointsmerge at onelevel. Hencethe
formulahadto bemodifiedto make it applicable.Usingit, we canestimatedistances
betweenclustersat level E�! �

usingcentroiddistancesbetweenpointsat level E . The
distancebetweenclustersf and g is givenby theformula:

(h@ij�2klh]i �S��`ba �&mnh ! mni]� Z (4)
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where C h
representsthenumberof (original) pointsin cluster f and C i

represents
the numberof (original) points in cluster g . For the heightof a node f in a treethe
formula usedis the meandistanceof all the points in the clusterrepresentedby the
nodeasshown below. w h�� d

C h0� C h �x� �
o"pr�ysPt r�esPt ��U�

(6)

Thepointsin thecluster f arerepresentedby theleaf nodesof theagglomerative tree
thathavenodef asanancestor. C h

is thenumberof pointsin cluster f .
We examinedthequality of dimensionlessclusteringby consideringonly thedis-

tanceinformationbetweendatapointsin differentdimensionalEuclideanspaces.For
a very high dimensionalspacethe error was small and sincethe AssociationRule
spaceis inherentlyhigh dimensional,theformulasfor clusterwidth anddistanceesti-
mationwork well. Theclustersobtainedduring simulationsusingthedimensionless
approximationareidenticalto dimensionbasedclusteringfor upto 60pointsfor a2-D
spaceandevenmorefor higherdimensionspace.At 1000pointsand40 dimensions
the numberof pointsgroupeddifferently in the clusteringtreeis lessthan1% on an
average.

SOM CLUSTERING & VISUALIZATION

The scalardistancebetweenthe rulescannotbe usedasan input to a SOM directly.
HenceMulti-DimensionalScalingis performedusingSingularValueDecomposition.
Thedatais normalizedto zeromeandistributionandthesuitablevaluefor theembed-
dingdimensionis obtainedby monitoringtheStressFactor[6].GiventheMatrix M as
theoriginaldistancematrixandM’ asthecorrespondingmatrix in theprojectedspace,
theStressbetweenM andM’ is givenby:

�j>z�{AGFGF �}|�~J sPt | J�� t�ysPt �6�� J � ��� J � 1
| ~J sPt | J"� t�^sPt �,(� J � 1 (7)

A Stressthresholdwith a shortenedbinary searchgivesa very closeestimateof the
correctnumberof dimensionsin 2-4 trials. For asearchrangeof 1 to N, theShortened
Binary Searchexaminesstressvalueat � � ~ 1 �0� ~� �(� ~� , .. until theStressis lessthan
threshold. For 1000 rules the cutoff was reachedwith ShortenedBinary Searchat
L=750with 2.3% Stress.

The embeddedspaceobtainedfrom Multi-DimensionalScalingcannow beused
with any clusteringalgorithm that needsa vector input. In particular, mappingthe
inputspaceto a2-D SOMoutputspaceseemedto beverysuitablesinceit providesan



easyvisualizationof theclustering.But how doweverify resultsfrom SOMgiventhe
abstractnatureof ’distance’betweenrules? Wedevelopedanovel techniquebasedon
defininga hierarchicalcolor spectrumover theAgglomerative ClusteringTree. Thus
themoresimilar two clustersarein color, themorecloselythey appeartogetherin the
AgglomerativeClusteringtree.Thisallowsusto evaluateourSOMresultsby coloring
theSOMwith thecolorsfrom theAgglomerativeClusteringTreehierarchy.

RESULTS

Thetestdata-setconsistsof 172,000cashregistertransactionsof ahomeimprovement
store.Fromthis data2831frequentitem sets,4782associationrulesand1311hashed
associationrulesareextracted.Thenew CMBP meetsthe intuitive expectationsof a
distancemetricmuchbetter. AgglomerativeClusteringwasperformedon a rulesdis-
tancematrixof size1,311x1,311.Thenumberof differentlevelsavailablefor splitting
the treeobtainedis 289. The split that is usedfor definingthe colorsof the SOM is
suchthat it resultsin 19 clustersat 208thsplit level and715 clustersat 210thsplit
level. Theweb-sitehttp://www.ece.utexas.edu/ gunjan/aclu/ hasSOM resultsfor var-
iousnumberof epochs.Clustersof relatively purecolor clearlyshow thecorrelation
betweentheclustersdiscoveredby DimensionlessAgglomerativeChainClusteringal-
gorithmandtheSOM.GiventhatSOMis mapping715clustersontoa10x10grid, we
expecton anaverageof 7 clustersto fall ontoonepoint. Most of theoverlapsshould
bewith otherclustersthatarecloseto thegivenclusters.This shouldresultin a color
localizationon theSOM.Sincethereis no groundtruth, thevisualizationusingSOM
allowsusto only getagoodoverall ideaof theclusters.A goodoverlapbetweenSOM
andAgglomerative Clusteringmight imply that theclustersaremorereliable. It also
allows theuserto inspectsuchclustersfirst. But theonly way to seeif theclustersare
goodis by printing out thetext form of theAssociationRules.Therulesdo appearto
be correlatedasopposedto randomlypicked rules. Someexamplesarelisted at our
web-siteat http://www.ece.utexas.edu/ gunjan/aclu/clustertext .

Conclusions and Future Work. A key reasonfor clusteringrules is to obtain
moreconciseandabstractdescriptionsof the data. We plan on merging rulesof the
sameclusterinto joined meta-rules.However, this is not a trivial problem. We are
currently investigatingthe useof meta-data(suchasproducthierarchies)to support
merging decisions.More powerful agglomerativeclusteringtechniquesthathaveoth-
erheightdefinitionsandsplittingpropertiesmayyield betterclusters.Trying outother
distancemeasuresfor clustercentersis requiredfor comparingresults.Anotheridea
is to modify the SOM to allow training on dimensionlessdistancedata. Anotheral-
ternative worth exploring is to representdataat multiple levels of producthierarchy
beforeextracting,clusteringandmergingof associationrules.Thismayprovidemore
abstractdescriptionsof thedata’sassociationrulesthatbettercapturecustomerbuying
behavior.
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