
Cluster Ensembles – A Knowledge Reuse Framework for Combining Partitionings

Alexander Strehl and Joydeep Ghosh∗

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712, USA
strehl@ece.utexas.edu and ghosh@ece.utexas.edu

Abstract

It is widely recognized that combining multiple classifi-
cation or regression models typically provides superior
results compared to using a single, well-tuned model.
However, there are no well known approaches to com-
bining multiple non-hierarchical clusterings. The idea
of combining cluster labelings without accessing the
original features leads us to a general knowledge reuse
framework that we call cluster ensembles. Our contri-
bution in this paper is to formally define the cluster en-
semble problem as an optimization problem and to pro-
pose three effective and efficient combiners for solving
it based on a hypergraph model. Results on synthetic
as well as real data sets are given to show that cluster
ensembles can (i) improve quality and robustness, and
(ii) enable distributed clustering.

Introduction
The notion of integrating multiple data sources and/or
learned models is found in several disciplines, for example,
the combining of estimators in econometrics, evidences in
rule-based systems and multi-sensor data fusion. A simple
but effective type of such multi-learner systems are ensem-
bles, wherein each component learner (typically a regres-
sor or classifier) tries to solve the same task (Sharkey 1996;
Tumer & Ghosh 1996).

But unlike classification and regression problems, there
are no well known approaches to combining multiple clus-
terings which is more difficult than designing classifier en-
sembles since cluster labels are symbolic and so one must
also solve a correspondence problem. In addition, the num-
ber and shape of clusters provided by the individual solu-
tions may vary based on the clustering method as well as on
the particular view of the data presented to that method.

A clusterer consists of a particular clustering algorithm
with a specific view of the data. A clustering is the output
of a clusterer and consists of the group labels for some or all
objects. Cluster ensembles provide a tool for consolidation
of results from a portfolio of individual clustering results. It
is useful in a variety of contexts:

∗This research was supported in part by the NSF under Grant
ECS-9900353, by IBM and Intel.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

- Quality and Robustness. Combining several clusterings
can lead to improved quality and robustness of results. Di-
versity among individual clusterers can be achieved by us-
ing different features to represent the objects, by varying the
number and/or location of initial cluster centers in iterative
algorithms such as k-means, varying the order of data pre-
sentation in on-line methods such as BIRCH, or by using a
portfolio of diverse clustering algorithms.
- Knowledge Reuse (Bollacker & Ghosh 1998). Another
important consideration is the reuse of existing clusterings.
In several applications, a variety of clusterings for the ob-
jects under consideration may already exist. For exam-
ple, in grouping customers for a direct marketing campaign,
various legacy customer segmentations might already ex-
ist, based on demographics, credit rating, geographical re-
gion, or income tax bracket. In addition, customers can be
clustered based on their purchasing history (e.g., market-
baskets) (Strehl & Ghosh 2002). Can we reuse such pre-
existing knowledge to create a single consolidated cluster-
ing? Knowledge reuse in this context means that we exploit
the information in the provided cluster labels without going
back to the original features or the algorithms that were used
to create the clusterings.
- Distributed Computing. The ability to deal with clustering
in a distributed fashion is useful to improve scalability, secu-
rity, and reliability. Also, real applications often involve dis-
tributed databases due to organizational or operational con-
straints. A cluster ensemble can combine individual results
from the distributed computing entities.

Related Work. As mentioned in the introduction, there
is an extensive body of work on combining multiple classi-
fiers or regression models, but little on combining multiple
clusterings so far in the machine learning community. How-
ever, there was a substantial body of largely theoretical work
on consensus classification during the mid-80s and earlier
(Barthelemy, Laclerc, & Monjardet 1986). These studies
used the term ‘classification’ in a very general sense, en-
compassing partitions, dendrograms and n-trees as well. In
consensus classification, a profile is a set of classifications
which is sought to be integrated into a single consensus clas-
sification. A representative work is that of (Neumann & Nor-
ton 1986), who investigated techniques for strict consensus.
Their approach is based on the construction of a lattice over
the set of all partitionings by using a refinement relation.



Such work on strict consensus works well for small data-sets
with little noise and little diversity and obtains solution on a
different level of resolution. The most prominent application
of strict consensus is for the computational biology commu-
nity to obtain phylogenetic trees (Kim & Warnow 1999).

One use of cluster ensembles proposed in this paper is
to exploit multiple existing groupings of the data. Several
analogous approaches exist in supervised learning scenarios
(class labels are known), under categories such as ‘life-long
learning’, ‘learning to learn’, and ‘knowledge reuse’ (Bol-
lacker & Ghosh 1999). Several representative works can be
found in (Thrun & Pratt 1997).

Another application of cluster ensembles is to combine
multiple clustering that were obtained based on only partial
sets of features. This problem has been approached recently
as a case of collective data mining. In (Johnson & Kargupta
1999) a feasible approach to combining distributed agglom-
erative clusterings is introduced. First, each local site gener-
ates a dendrogram. The dendrograms are collected and pair-
wise similarities for all objects are created from them. The
combined clustering is then derived from the similarities.

The usefulness of having multiple views of data for better
clustering has been recognized by others as well. In multi-
aspect clustering (Modha & Spangler 2000), several simi-
larity matrices are computed separately and then integrated
using a weighting scheme. Also, Mehrotra has proposed
a multi-viewpoint clustering, where several clusterings are
used to semi-automatically structure rules in a knowledge
base (Mehrotra 1999).

Notation. Let X = {x1, x2, . . . , xn} denote a set of ob-
jects/samples/points. A partitioning of these n objects into
k clusters can be represented as a set of k sets of objects
{C�|� = 1, . . . , k} or as a label vector λ ∈ Nn. We also
refer to a clustering/labeling as a model. A clusterer Φ is
a function that delivers a label vector given an ordered set
of objects. We call the original set of labelings, the profile
and the resulting single labeling, the consensus clustering.
Vector/matrix transposition is indicated with a superscript †.

The Cluster Ensemble Problem
Illustrative Example
First, we will illustrate combining of clusterings using a sim-
ple example. Let the label vectors as given on the left of
table 1 specify four clusterings. Inspection of the label vec-
tors reveals that clusterings 1 and 2 are logically identical.
Clustering 3 introduces some dispute about objects 3 and
5. Clustering 4 is quite inconsistent with all the other ones,
has two groupings instead of 3, and also contains missing
data. Now let us look for a good combined clustering with
3 clusters. Intuitively, a good combined clustering should
share as much information as possible with the given 4 la-
belings. Inspection suggests that a reasonable integrated
clustering is (2, 2, 2, 3, 3, 1, 1)† (or one of the 6 equivalent
clusterings such as (1, 1, 1, 2, 2, 3, 3)†). In fact, after per-
forming an exhaustive search over all 301 unique cluster-
ings of 7 elements into 3 groups, it can be shown that this
clustering shares the maximum information with the given 4
label vectors (in terms that are more formally introduced in

the next subsection). This simple example illustrates some
of the challenges. We have already seen that the label vector
is not unique. In general, the number of clusters as well as
each cluster’s interpretation may vary tremendously among
models.

Objective Function for Cluster Ensembles
Given r groupings with the q-th grouping λ(q) having k(q)

clusters, a consensus function Γ is defined as a function
Nn×r → Nn mapping a set of clusterings to an integrated
clustering: Γ : {λ(q) | q ∈ {1, . . . , r}} → λ. The optimal
combined clustering should share the most information with
the original clusterings. But how do we measure shared in-
formation between clusterings? In information theory, mu-
tual information is a symmetric measure to quantify the sta-
tistical information shared between two distributions. Sup-
pose there are two labelings λ(a) and λ(b). Let there be k(a)

groups in λ(a) and k(b) groups in λ(b). Let n(h) be the num-
ber of objects in cluster Ch according to λ(a), and n� the
number of objects in cluster C� according to λ(b). Let n

(h)
�

denote the number of objects that are in cluster h accord-
ing to λ(a) as well as in group � according to λ(b). Then,
a [0,1]-normalized mutual information criterion φ(NMI) is
computed as follows (Strehl, Ghosh, & Mooney 2000):

φ(NMI)(λ(a), λ(b)) =
2
n

k(a)∑
�=1

k(b)∑
h=1

n
(h)
� logk(a)·k(b)

(
n

(h)
� n

n(h)n�

)

(1)
We propose that the optimal combined clustering λ(k−opt)

be defined as the one that has maximal average mutual in-
formation with all individual labelings λ(q) given that the
number of consensus clusters desired is k. Thus, our ob-
jective function is Average Normalized Mutual Information
(ANMI). Then, λ(k−opt) is defined as

λ(k−opt) = arg max
λ̂

r∑
q=1

φ(NMI)(λ̂, λ(q)) (2)

where λ̂ goes through all possible k-partitions. The sum
in equation 2 represents rANMI. For finite populations, the
trivial solution is to exhaustively search through all possible
clusterings with k labels (approximately kn/k! for n � k)
for the one with the maximum ANMI which is computa-
tionally prohibitive. If some labels are missing one can still
apply equation 2 by summing only over the object indices
with known labels.

Efficient Consensus Functions
In this section, we introduce three efficient heuristics to
solve the cluster ensemble problem. All algorithms ap-
proach the problem by first transforming the set of cluster-
ings into a hypergraph representation.

Representing Sets of Clusterings as a Hypergraph
The first step for our proposed consensus functions is to
transform the given cluster label vectors into a suitable hy-
pergraph representation. In this subsection, we describe how
any set of clusterings can be mapped to a hypergraph.



λ(1) λ(2) λ(3) λ(4)

x1 1 2 1 1
x2 1 2 1 2
x3 1 2 2 ?
x4 2 3 2 1
x5 2 3 3 2
x6 3 1 3 ?
x7 3 1 3 ?

⇔

H(1) H(2) H(3) H(4)

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

v1 1 0 0 0 1 0 1 0 0 1 0
v2 1 0 0 0 1 0 1 0 0 0 1
v3 1 0 0 0 1 0 0 1 0 0 0
v4 0 1 0 0 0 1 0 1 0 1 0
v5 0 1 0 0 0 1 0 0 1 0 1
v6 0 0 1 1 0 0 0 0 1 0 0
v7 0 0 1 1 0 0 0 0 1 0 0

Table 1: Illustrative cluster ensemble problem with r = 4, k(1,...,3) = 3, and k(4) = 2: Original label vectors (left) and
equivalent hypergraph representation with 11 hyperedges (right). Each cluster is transformed into a hyperedge.

For each label vector λ(q) ∈ Nn, we construct the bi-
nary membership indicator matrix H(q) ∈ Nn×k(q)

in which
each cluster is represented as a hyperedge (column), as illus-
trated in table 1. All entries of a row in the binary member-
ship indicator matrix H(q) add to 1, if the row corresponds
to an object with known label. Rows for objects with un-
known label are all zero. The concatenated block matrix
H = (H(1) . . . H(r)) defines the adjacency matrix of a hy-
pergraph with n vertices and

∑r
q=1 k(q) hyperedges. Each

column vector ha specifies a hyperedge ha, where 1 indi-
cates that the vertex corresponding to the row is part of that
hyperedge and 0 indicates that it is not. Thus, we have
mapped each cluster to a hyperedge and the set of cluster-
ings to a hypergraph.

Cluster-based Similarity Partitioning Algorithm
(CSPA)
Essentially, if two objects are in the same cluster then they
are considered to be fully similar, and if not they are fully
dissimilar. This is the simplest heuristic and is used in the
Cluster-based Similarity Partitioning Algorithm (CSPA) So,
one can define similarity as the fraction of clusterings in
which two objects are in the same cluster. The entire n × n
similarity matrix S can be computed in one sparse matrix
multiplication S = 1

rHH†. Now, we can use S to recluster
the objects using any reasonable similarity based clustering
algorithm. We chose to partition the induced graph (vertex =
object, edge weight = similarity) using METIS (Karypis &
Kumar 1998) because of its robust and scalable properties.

HyperGraph-Partitioning Algorithm (HGPA)
The second algorithm is another direct approach to cluster
ensembles that re-partitions the data using the given clus-
ters as indications of strong bonds. The cluster ensem-
ble problem is formulated as partitioning the hypergraph
by cutting a minimal number of hyper-edges. We call this
approach the HyperGraph-Partitioning Algorithm (HGPA).
All hyperedges are considered to have the same weight.
Also, all vertices are equally weighted. Now, we look for
a hyperedge separator that partitions the hypergraph into k
unconnected components of approximately the same size.
Equal sizes are obtained by maintaining a vertex imbalance
of at most 5% as formulated by the following constraint:
k · max�∈{1,...,k}

n�

n ≤ 1.05.

Hypergraph partitioning is a well-studied area. We use
the hypergraph partitioning package HMETIS (Karypis et
al. 1997), which gives high-quality partitions and is very
scalable.

Meta-CLustering Algorithm (MCLA)

In this subsection, we introduce the third algorithm to solve
the cluster ensemble problem. The Meta-CLustering Algo-
rithm (MCLA) is based on clustering clusters. It also yields
object-wise confidence estimates of cluster membership.

We represented each cluster by a hyperedge. The idea
in MCLA is to group and collapse related hyperedges and
assign each object to the collapsed hyperedge in which it
participates most strongly. The hyperedges that are consid-
ered related for the purpose of collapsing are determined by
a graph-based clustering of hyperedges. We refer to each
cluster of hyperedges as a meta-cluster C(M). Collapsing re-
duces the number of hyperedges from

∑r
q=1 k(q) to k. The

detailed steps are:
- Construct Meta-graph. Let us view all the

∑r
q=1 k(q)

indicator vectors h (the hyperedges of H) as vertices of a
regular undirected graph, the meta-graph. The edge weights
are proportional to the similarity between vertices. A suit-
able similarity measure here is the binary Jaccard measure,
since it is the ratio of the intersection to the union of the
sets of objects corresponding to the two hyperedges. For-
mally, the edge weight wa,b between two vertices ha and hb

as defined by the binary Jaccard measure of the correspond-

ing indicator vectors ha and hb: wa,b = h†
ahb

‖ha‖2
2+‖hb‖2

2−h†
ahb

.

Since the clusters are non-overlapping (e.g., hard), there are
no edges amongst vertices of the same clustering H(q) and,
thus, the meta-graph is r-partite.
- Cluster Hyperedges. Find matching labels by partitioning
the meta-graph into k balanced meta-clusters. This results in
a clustering of the h vectors in H. Each meta-cluster has ap-
proximately r vertices. Since each vertex in the meta-graph
represents a distinct cluster label, a meta-cluster represents
a group of corresponding labels.
- Collapse Meta-clusters. For each of the k meta-clusters,
we collapse the hyperedges into a single meta-hyperedge.
Each meta-hyperedge has an association vector which con-
tains an entry for each object describing its level of asso-
ciation with the corresponding meta-cluster. The level is



computed by averaging all indicator vectors h of a partic-
ular meta-cluster. An entry of 0 or 1 indicates the weakest
or strongest association, respectively.
- Compete for Objects. In this step, each object is assigned
to its most associated meta-cluster: Specifically, an object is
assigned to the meta-cluster with the highest entry in the as-
sociation vector. Ties are broken randomly. The confidence
of an assignment is reflected by the winner’s share of asso-
ciation (ratio of the winner’s association to the sum of all
other associations). Note that not every meta-cluster can be
guaranteed to win at least one object. Thus, there are at most
k labels in the final combined clustering λ.

In this paper, for all experiments all three algorithms,
CSPA, HGPA and MCLA, are run and the clustering with
the greater ANMI is used. Note that this procedure is still
completely unsupervised. We call this the supra-consensus
function.

Applications and Results
Consensus functions enable a variety of new approaches to
several problems. After introducing the data-sets and eval-
uation methodology used, we illustrate how robustness can
be increased and how distributed clustering clustering can
be performed when each entity only has access to a limited
subset of features.

Data-sets. We illustrate the cluster ensemble applications
on two real and two artificial data-sets. The first data-set
(2D2K) was artificially generated and contains 500 points
each of two 2-dimensional (2D) Gaussian clusters. The sec-
ond data-set (8D5K) contains 1000 points from 5 multivari-
ate Gaussian distributions (200 points each) in 8D. Both are
available from http://strehl.com/. The third data-
set (PENDIG) is for pen-based recognition of handwritten
digits from 16 spatial features (available from UCI Machine
Learning Repository). There are ten classes of roughly
equal size corresponding to the digits 0 to 9. The fourth
data-set (YAHOO) is for news text clustering (available from
ftp://ftp.cs.umn.edu/dept/users/boley/).
The raw 21839 × 2340 word-document matrix consists of
the non-normalized occurrence frequencies of stemmed
words, using Porter’s suffix stripping algorithm. Pruning all
words that occur less than 0.01 or more than 0.10 times on
average because they are insignificant or too generic, results
in 2903. For 2D2K, 8D5K, PENDIG, and YAHOO we use
k = 2, 5, and 10, 40 respectively.

Quality Evaluation Criterion. Standard cost functions,
such as the sum of squared distances from the cluster repre-
sentative, depend on metric interpretations of the data. They
cannot be used to compare techniques that use different dis-
tance/similarity measures or work entirely without them.
However, when objects have already been categorized by an
external source, i.e. when class labels are available, we can
use information theoretic measures to indicate the match be-
tween cluster labels and class labels. Previously, average pu-
rity and entropy-based measures to assess clustering quality
from 0 (worst) to 1 (best) have been used. While average pu-
rity is intuitive to understand, it is biased to favor small clus-
ters (singletons, in fact, are scored as perfect). Also, a mono-
lithic clustering (one single cluster for all objects) receives

a score as high as the maximum category prior probability.
Using a measure based on normalized mutual information
(equation 1) fixes both biases (Strehl, Ghosh, & Mooney
2000) and provides an unbiased and conservative measure
as compared to purity and entropy. Given g categories (or
classes), we use the categorization labels κ to evaluate the
quality by normalized mutual information φ(NMI)(κ, λ), as
defined in equation 1.

Robust Centralized Clustering (RCC)
A consensus function can introduce redundancy and foster
robustness when, instead of choosing or fine-tuning a single
clusterer, an ensemble of clusterers is employed and their
results are combined. This is particularly useful when clus-
tering has to be performed in a closed loop without human
interaction.

In Robust Centralized Clustering (RCC), each clusterer
has access to all features and to all objects. However, each
clusterer might take a different approach. In fact, approaches
should be very diverse for best results. They can use differ-
ent similarity/distance measures (e.g., Euclidean, cosine) or
techniques (graph-based, agglomerative, k-means) (Strehl,
Ghosh, & Mooney 2000). The ensemble’s clusterings are
then integrated using the supra-consensus function.

To show that RCC can yield robust results in low-
dimensional metric spaces as well as in high-dimensional
sparse spaces without any modifications, the following ex-
periment was set up: First, 10 diverse clustering algorithms
were implemented: (1) self-organizing map; (2) hypergraph
partitioning; k-means with distance based on (3) Euclidean,
(4) cosine, (5) correlation, (6) extended Jaccard; and graph
partitioning with similarity based on (7) Euclidean, (8) co-
sine, (9) correlation, (10) extended Jaccard. Implementa-
tional details of the individual algorithms are beyond the
scope of this paper and can be found in (Strehl, Ghosh, &
Mooney 2000).

RCC was performed 10 times each on sample sizes of 50,
100, 200, 400, and 800, for each data-set. Different sample
sizes provide insight how cluster quality improves as more
data becomes available. Quality improvement depends on
the clusterer as well as the data. For example, more com-
plex data-sets require more data until quality maxes out. We
also computed a random clustering for each experiment to
establish a baseline performance. The quality in terms of
difference in mutual information as compared to the random
clustering algorithm is computed for all 11 approaches (10 +
consensus). Figure 1 shows learning curves for the average
quality of the 10 algorithms versus RCC.

E.g., in case of the YAHOO data (figure 1(d)) the consensus
function received three poor clusterings (Euclidean based
k-means as well as graph partitioning; and self-organizing
feature-map), four good (hypergraph partitioning, cosine,
correlation, and extended Jaccard based k-means) and three
excellent (cosine, correlation, and extended Jaccard based
graph partitioning) clusterings. The RCC results are almost
as good as the average of the excellent clusterers despite the
presence of distractive clusterings. In fact, at the n = 800
level, RCC’s average quality of 0.38 is 19% better than the
average qualities of all the other algorithms (excluding ran-



dom) at 0.32. This shows that for this scenario, cluster en-
sembles work well and also are robust!

Similar results are obtained for 2D2K, 8D5K and
PENDIG. Figure 1 shows how RCC is consistently better
in all four scenarios than picking a random / average single
technique. The experimental results clearly show that cluster
ensembles can be used to increase robustness in risk intoler-
ant settings. Especially, since it is generally hard to evaluate
clusters in high-dimensional problems, a cluster ensemble
can be used to ‘throw’ many models at a problem and then
integrate them using an consensus function to yield stable
results.

Feature-Distributed Clustering (FDC)
In Feature-Distributed Clustering (FDC), we show how clus-
ter ensembles can be used to boost quality of results by com-
bining a set of clusterings obtained from partial views of the
data. For our experiments, we simulate such a scenario by
running several clusterers, each having access to only a re-
stricted, small subset of features (subspace). Each clusterer
has access to all objects. The clusterers find groups in their
views/subspaces. In the combining stage, individual results
are integrated to recover the full structure of the data (with-
out access to any of the original features).

First, let us discuss results for the 8D5K data, since they
lend themselves well to illustration. We create 5 random 2D
views (through selection of a pair of features) of the 8D data,
and use Euclidean-based similarity and graph-partitioning
with k = 5 in each view to obtain 5 clusterings. Clus-
tering in the 8D space yields the original generative labels
and is referred to as the reference clustering. Using PCA to
project the data into 2D separates all 5 clusters fairly well
(figure 3). In figure 3(a), the reference clustering is illus-
trated by coloring the data points in the space spanned by
the first and second principal components (PCs). Figure 3(b)
shows the final FDC result after combining 5 subspace clus-
terings. Each clustering has been computed from a random
feature pair. These subspaces are shown in figure 2. Each
of the rows corresponds to a random selection of 2 out of
8 feature dimensions. For consistent appearance of clusters
across rows, the dot colors/shapes have been matched using
meta-clusters. All points in clusters of the same meta-cluster
share the same color/shape amongst all plots. FDC (figure
3(b)) are clearly superior compared to any of the 5 individ-
ual results (figure 2(right)) and is almost flawless compared
to the reference clustering (figure 3(a)).

We also conducted experiments on the other four data-
sets. Table 2 summarizes the results. The choice of the
number of random subspaces r and their dimensionality is
currently driven by the user. For example, in the YAHOO
case, 20 clusterings were performed in 128-dimensions (oc-
currence frequencies of 128 random words) each. The aver-
age quality amongst the results was 0.17 and the best quality
was 0.21. Using the supra-consensus function to combine
all 20 labelings results in a quality of 0.38, or 124% higher
mutual information than the average individual clustering.
In all scenarios, the consensus clustering is as good or bet-
ter than the best individual input clustering and always bet-
ter than the average quality of individual clusterings. When

1

2

PC 1

P
C

 2

7

3

PC 1

P
C

 2

8

7

PC 1

P
C

 2

5

6

PC 1

P
C

 2

4

8

PC 1

P
C

 2

Figure 2: Illustration of feature distributed clustering (FDC)
on 8D5K data. Each row corresponds to a random selec-
tion of 2 out of 8 feature dimensions. For each of the 5
chosen feature pairs, a row shows the clustering (colored)
obtained on the 2D subspace spanned by the selected fea-
ture pair (left) and visualizes these clusters on the plane of
the global 2 principal components (right). In any subspace,
the clusters can not be segregated well due to strong over-
laps. The supra-consensus function can combine the partial
knowledge of the 5 clusterings into a far superior clustering
(figure 3(b)).

PC 1

P
C

 2

PC 1

P
C

 2

(a) (b)

Figure 3: Reference clustering (a) and FDC consensus clus-
tering (b) of 8D5K data shown in the first 2 principal compo-
nents. The consensus clustering (b) is clearly superior com-
pared to any of the 5 individual results (figure 2(right)) and
is almost flawless compared to the reference clustering (a).



100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c) (d)

Figure 1: Summary of RCC results. Average learning curves and RCC learning curves for 2D2K (a), 8D5K (b), PENDIG
(c), and YAHOO (d) data. Each learning curve shows the difference in mutual information-based quality φ(NMI) compared to
random for 5 sample sizes. The bars for each data-point indicate ±1 standard deviation over 10 experiments. The upper curve
gives RCC quality for combining results of all other 10 algorithms. The lower curve is the average quality of the other 10.

data subspace #models quality of consensus maximum quality in subpaces average quality in subspaces minimum quality in subspaces

#dims r φ(NMI)(κ, λ) maxq φ(NMI)(κ, λ(q)) avgqφ(NMI)(κ, λ(q)) minq φ(NMI)(κ, λ(q))

2D2K 1 3 0.68864 0.68864 0.64145 0.54706

8D5K 2 5 0.98913 0.76615 0.69822 0.62134

PENDIG 4 10 0.59009 0.53197 0.44625 0.32598

YAHOO 128 20 0.38167 0.21403 0.17075 0.14582

Table 2: FDC results. The consensus clustering is as good as or better than the best individual subspace clustering.

processing on the all features is not possible but multiple,
limited views exist, a cluster ensemble can boost results sig-
nificantly compared to individual clusterings.

Concluding Remarks
In this paper we introduced the cluster ensemble problem
and provide three effective and efficient algorithms to solve
it. We conducted experiments to show how cluster ensem-
bles can be used to introduce robustness and dramatically
improve ’sets of subspace clusterings’ for a large variety of
domains. Selected data-sets and software are available from
http://strehl.com/. Indeed, the cluster ensemble is
a very general framework and enables a wide range of appli-
cations.

For future work, we desire a thorough theoretical analy-
sis of the Average Normalized Mutual Information (ANMI)
objective and its greedy optimization schemes. We also
pursue work on comparing the proposed technique’s biases.
Moreover, we explore using cluster ensembles for object dis-
tributed clustering.

References
Barthelemy, J. P.; Laclerc, B.; and Monjardet, B. 1986. On the
use of ordered sets in problems of comparison and consensus of
classifications. Journal of Classification 3:225–256.

Bollacker, K. D., and Ghosh, J. 1998. A supra-classifier architec-
ture for scalable knowledge reuse. In Proc. Int’l Conf. on Machine
Learning (ICML-98), 64–72.

Bollacker, K. D., and Ghosh, J. 1999. Effective supra-classifiers
for knowledge base construction. Pattern Recognition Letters
20(11-13):1347–52.

Johnson, E., and Kargupta, H. 1999. Collective, hierarchical
clustering from distributed, heterogeneous data. In Zaki, M., and

Ho, C., eds., Large-Scale Parallel KDD Systems, volume 1759 of
Lecture Notes in Computer Science, 221–244. Springer-Verlag.

Karypis, G., and Kumar, V. 1998. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM Journal of
Scientific Computing 20(1):359–392.

Karypis, G.; Aggarwal, R.; Kumar, V.; and Shekhar, S. 1997.
Multilevel hypergraph partitioning: Applications in VLSI do-
main. In Proceedings of the Design and Automation Conference.

Kim, J., and Warnow, T. 1999. Tutorial on phylogenetic tree esti-
mation. In Intelligent Systems for Molecular Biology, Heidelberg.

Mehrotra, M. 1999. Multi-viewpoint clustering analysis (MVP-
CA) technology for mission rule set development and case-based
retrieval. Technical Report AFRL-VS-TR-1999-1029, Air Force
Research Laboratory.

Modha, D. S., and Spangler, W. S. 2000. Clustering hypertext
with applications to web searching. In Proceedings of the ACM
Hypertext 2000 Conference, San Antonio, TX, May 30-June 3.

Neumann, D. A., and Norton, V. T. 1986. Clustering and isolation
in the consensus problem for partitions. Journal of Classification
3:281–298.

Sharkey, A. 1996. On combining artificial neural networks. Con-
nection Science 8(3/4):299–314.

Strehl, A., and Ghosh, J. 2002. Relationship-based clustering
and visualization for high-dimensional data mining. INFORMS
Journal on Computing. in press.

Strehl, A.; Ghosh, J.; and Mooney, R. 2000. Impact of similarity
measures on web-page clustering. In Proc. AAAI Workshop on AI
for Web Search (AAAI 2000), Austin, 58–64. AAAI/MIT Press.

Thrun, S., and Pratt, L. 1997. Learning To Learn. Norwell, MA:
Kluwer Academic.

Tumer, K., and Ghosh, J. 1996. Analysis of decision bound-
aries in linearly combined neural classifiers. Pattern Recognition
29(2):341–348.


