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Abstract This paper presents OPOSSUM, a novel similarity-based clus-
tering approach based on constrained, weighted graph-partitioning. OPOs-
SUM is particularly attuned to real-life market baskets, characterized
by very high-dimensional, highly sparse customer-product matrices with
positive ordinal attribute values and significant amount of outliers. Since
it is built on top of Metis, a well-known and highly efficient graph-
partitioning algorithm, it inherits the scalable and easily parallelizeable
attributes of the latter algorithm. Results are presented on a real retail
industry data-set of several thousand customers and products, with the
help of CLUSION, a cluster visualization tool.

1 Introduction

A key step in market-basket analysis is to cluster customers into relatively homo-
geneous groups according to their purchasing behavior. A large market-basket
database may involve millions of customers and several thousand product-lines.
For each product a customer could potentially buy, a feature (attribute) is
recorded in the data-set. A feature usually corresponds to some property (e.g.,
quantity, price, profit) of the goods purchased. Most customers only buy a small
subset of products. If we consider each customer as a multi-dimensional data
point and then try to cluster customers based on their buying behavior, the
problem differs from classic clustering scenarios in several ways [1]:

— High dimensionality: The number of features is very high and may even
exceed the number of samples. So one has to face with the curse of dimen-
sionality.

— Sparsity: Most features are zero for most samples. This strongly affects the
behavior of similarity measures and the computational complexity.

— Significant outliers: Outliers such as a few, big corporate customers that
appear in an otherwise small retail customer data, may totally offset results.
Filtering these outliers may not be easy, nor desirable since they could be
very important (e.g., major revenue contributors).
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In addition, features are often neither nominal, nor continuous, but have dis-
crete positive ordinal attribute values, with a strongly non-Gaussian distribu-
tion. Moreover, since the number of features is very high, normalization can
become difficult. Due to these issues, traditional clustering techniques work
poorly on real-life market-basket data. This paper describes OPOSSUM, a graph-
partitioning approach using value-based features, that is well suited for market-
basket clustering scenarios, exhibiting some or all of the characteristics described
above. We also examine how this approach scales to large data sets and how it
can be parallelized on distributed memory machines.

2 Related Work

Clustering has been widely studied in several disciplines, specially since the
early 60’s [2,3]. Some classic approaches include partitional methods such as
k-means, hierarchical agglomerative clustering, unsupervised Bayes, and soft,
statistical mechanics based techniques. Most classical techniques, and even fairly
recent ones proposed in the data mining community (CLARANS, DBSCAN, BIRCH,
CLIQUE, CURE, WAVECLUSTER etc. [4]), are based on distances between the
samples in the original vector space. Thus they are faced with the “curse of
dimensionality” and the associated sparsity issues, when dealing with very high
dimensional data. Recently, some innovative approaches that directly address
high-dimensional data mining have emerged. ROCK (Robust Clustering using
linKs) [5] is an agglomerative hierarchical clustering technique for categorical
attributes. It uses the binary Jaccard coefficient and a thresholding criterion to
establish links between samples. Common neighbors are used to define inter-
connectivity of clusters which is used to merge clusters. CHAMELEON [6] starts
with partitioning the data into a large number of clusters by partitioning the
v-nearest neighbor graph. In the subsequent stage clusters are merged based on
inter-connectivity and their relative closeness. Scalability Studies on clustering
have taken two directions:

1. Perform k-means or a variant thereof, on a single computer with limited
main memory, with as few scans of the database as possible [7]. These algo-
rithms implicitly assume hyperspherical clusters of about the same size, and
thus the key idea is to update sufficient statistics (number of points, sum,
sum-squared) about the potential clusters in main memory as one scans
the database, and then do further refinement of cluster centers within main
memory.

2. Parallel implementations. k-means is readily parallelizeable through data
partitioning on distributed memory multicomputers, with little overhead [8].
At each iteration, the current locations of the £ means is broadcast to all
processors, who then independently perform the time consuming operation
of finding the closest mean for each (local) data point, and finally send the
(local) updates to the mean positions to a central processor that does a
global update using a MPI_allreduce operation.
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3 Domain Specific Features and Similarity Space

Notation. Let n be the number of objects (customers) in the data and d the
number of features (products) for each sample x; with j € {1,...,n}. The input
data can be represented by a d x n product-customer matrix X with the j-th
column representing the sample x;. Hard clustering assigns a label A; to each
d—dimensional sample x;, such that similar samples tend to get the same label.
The number of distinct labels is k, the desired number of clusters. In general the
labels are treated as nominals with no inherent order, though in some cases, such
as self-organizing feature maps (SOFMs) or top-down recursive graph-bisection,
the labeling may contain extra ordering information. Let Cy denote the set of
all customers in the ¢-th cluster (¢ € {1,...,k}), with x; € C, & \; = £ and
Ny = |Ce|

X
) v o
—

Xy ---- X,| —» —

Figure 1. Overview of the similarity based clustering framework OPOSSUM.

Fig. 1 gives an overview of our batch clustering process from a set of raw
object descriptions X via the vector space description X and similarity space
description S to the cluster labels A: (X € Z") EN (X € Fr C RIXn) LA (S e
Smxn = [0, 1j7n c Rm) & (A e On = {1,...,k}™).

Feature Selection and Similarity Measures. While most of the well-
known clustering techniques [3] have been for numerical features, certain recent
approaches assume categorical data [5]. In general, non-binary features are more
informative since they capture noisy behavior better for a small number of sam-
ples. For example, in market-basket data analysis, a feature typically represents
the absence (0) or presence (1) of a particular product in the current basket.
However, this treats a buyer of a single corn-flakes box the same as one who
buys one hundred such boxes. In OpP0OSSUM, we extend the common Boolean
notation to non-negative, real-valued features. The feature z;; now represents
the wvolume of product p; in a given basket (or sample) x;. While “volume”
could be measured by product quantity, we prefer to use monetary value (the
product of price and quantity) to quantify feature volume. This yields an almost
continuous distribution of feature values for large data sets. More importantly,
monetary value represents a normalization across all feature dimensions. This
normalization is highly desirable because it better aligns relevance for clustering
with retail management objectives.



4 Strehl and Ghosh

The key idea behind dealing with very high-dimensional data is to work in
similarity space rather than the original vector space in which the feature vectors
reside. A similarity measures € [0, 1] captures how related two data-points x,
and x; are. It should be symmetric (s(x,,%Xp) = s(xp,X4)), with self-similarity
$(Xq,%q) = 1.

A brute force implementation does involve O(n? x d) operations, since sim-
ilarity needs to be computed between each pair of data points, and involve all
the dimensions. Also, unless similarity is computed on the fly, O(n?) storage is
required for the similarity matrix. However, once this matrix is computed, the
following clustering routine does not depend on d at all!

An obvious way to compute similarity is through a suitable monotonic and
inverse function of a Minkowski distance, d. Candidates include s = e‘dz, and
$(Xq,%p) = 1/(1 + ||xq — Xp||2)- Similarity can also be defined by the angle
or cosine of the angle between two vectors. The cosine measure is widely used
in text clustering because two documents with equal classification because two
documents with equal word composition but different lengths can be considered
identical. In retail data this assumption loses important information about the
life-time customer value by normalizing them all to 1.

OPOSSUM is based on Jaccard Similarity. For binary features, the Jaccard
coefficient [2] measures the ratio of the intersection of the product sets to the
union of the product sets corresponding to transactions x, and xp:

x:flxb

S(J) (xa7xb)

= 1

[1%all3 + [15 13 — xbxs W
Since we want to analyze positive, real-valued features instead, an extended Jac-
card coefficient, also given by equation 1, but using positive numbers for attribute
values, is proposed. This coefficient captures a length-dependent measure of sim-
ilarity. However, it is still invariant to scale (dilating x, and x; by the same factor
does not change s(x,,x3))- A detailed discussion of the properties of various sim-
ilarity measures can be found in [9], where it is shown that the extended Jaccard
coefficient enables us to discriminate by the total value of market-baskets as
well as to overcome the issues of Euclidean distances in high-dimensional sparse
data.

4 CLUSION: Cluster Visualization

Since it is difficult to measure or visualize the quality of clustering in very high-
dimensional spaces, we first built a CLUSter visualizatION toolkit, CLUSION,
which is briefly described in this section. CLUSION first rearranges the columns
and rows of the similarity matrix such that points with the same cluster label
are contiguous. It then displays this permuted similarity matrix S with entries
Sab = $(Xq,Xp) as a gray-level image where a black (white) pixel corresponds
to minimal (maximal) similarity of 0 (1). The intensity (gray level value) of the
pixel at row a and column b corresponds to the similarity between the samples
X, and xp. The similarity within cluster £ is thus represented by the average
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intensity within a square region with side length n,, around the main diago-
nal of the matrix. The off-diagonal rectangular areas visualize the relationships
between clusters. The brightness distribution in the rectangular areas yields in-
sight towards the quality of the clustering and possible improvements. A bright
off-diagonal region may suggest that the clusters in the corresponding rows and
columns should be merged. In order to make these regions apparent, thin hor-
izontal and vertical lines are used to show the divisions into the rectangular
regions. Visualizing similarity space in this way can help to quickly get a feel for
the clusters in the data. Even for a large number of points, a sense for the intrin-
sic number of clusters k in a data-set can be gained. Examples for CLUSION are
given in Fig. 2. For further details, demos, and case studies that support certain
design choices (using monetary value, extended Jaccard coefficient), see [1].

5 OPOSSUM

OpossuM (Optimal Partitioning of Sparse Similarities Using Metis) is based
on partitioning a graph obtained from the similarity matrix, with certain con-
straints tailored to market-basket data. In particular, it is desirable here to have
clusters of roughly equal importance for upper management analysis. Therefore
OPOSSUM strives to deliver approximately equal sized (balanced) clusters using
either of the following two criteria:

— Sample balanced: Each cluster should contain roughly the same number of
samples, n/k. This allows retail marketers to obtain a customer segmentation
with equally sized customer groups.

— Value balanced: Each cluster should contain roughly the same amount of
feature values. In this case a cluster represents a k-th fraction of the to-
tal feature value Z;-lzl E;.izl x; ;. If we use extended revenue per product
(quantity x price) as value, then each cluster represents a roughly equal
contribution to total revenue.

We formulate the desired balancing properties by assigning each sample (cus-
tomer) a weight and then softly constrain the sum of weights in each cluster. For
sample balanced clustering, we assign each sample x; the same weight w; = 1. To
obtain value balancing properties, a sample x;’s weight is set to w; = E;-i:l Zij-
The desired balancing properties have many application driven advantages. How-
ever, since natural clusters may not be equal sized, over-clustering (using a larger
k) and subsequent merging may be helpful.

5.1 Single-constraint Single-objective Weighted Graph Partitioning

We map the problem of clustering to partitioning a weighted graph with a mini-
mum number of edge cuts while maintaining a balancing constraint. Graphs are
a well-understood abstraction and a large body of work exists on partitioning
them. In [9] they have been shown to perform superior in high-dimensional doc-
ument clustering. The objects to be clustered can be viewed as a set of vertices
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V. Two web-pages x, and x; (or vertices v, and vp) are connected with an undi-
rected edge (a,b) € &€ of positive weight s(x,,x3). The cardinality of the set of
edges |€| equals the number of non-zero similarities between all pairs of samples.
A set of edges whose removal partitions a graph G = (V,€) into k pair-wise
disjoint sub-graphs G, = (Vg, &), is called an edge separator AE. Our objective
is to find such a separator with a minimum sum of edge weights, as given by
equation 2.

minag 32, peae S(XasXp) ; AE = (E\(E1UE V... UE)) (2)

Without loss of generality, we can assume that the vertex weights w; are normal-
ized to sum up to 1: 3.7 w; = 1 While striving for the minimum cut objective,
the constraint k-max, i A=t Wi St has to be fulfilled. The left hand side quanti-
fies the load balance of the partitioning A. The load balance is dominated by the
worst cluster. A value of 1 indicates perfect balance. Of course, in many cases
the constraint can not be fulfilled exactly (e.g., sample balanced partitioning
with n odd and k even). However they can be fulfilled within a certain narrow
tolerance. We chose the maximum tolerated load imbalance ¢ > 1 to be 1.05, or
5%, for experiments in section 7.

Finding an optimal partitioning is an NP-hard problem. However, there are
very fast, heuristic algorithms for this widely studied problem [10]. The basic
approach to dealing with graph partitioning or minimum-cut problems is to
construct an initial partition of the vertices either randomly or according to
some problem-specific strategy. Then the algorithm sweeps through the vertices,
deciding whether the size of the cut would increase or decrease if we moved this
vertex v over to another partition. The decision to move v can be made in time
proportional to its degree by simply counting whether more of v’s neighbors are
on the same partition as v or not. Of course, the desirable side for v will change
if many of its neighbors switch, so multiple passes are likely to be needed before
the process converges to a local optimum.

After experimentation with several techniques, we decided to use the Metis
multi-level multi-constraint graph partitioning package because it is very fast
and scales well. A detailed description of the algorithms and heuristics used in
Metis can be found in Karypis et al. [11].

5.2 Optimal Clustering

This subsection describes how we find a desirable clustering, with high overall
cluster quality I and a small number of clusters k. Our objective is to maximize
intra-cluster similarity and minimize inter-cluster similarity, given by

intra(X, \, i) = m Ez\a=>\b=i,a>b 5(Xq,Xp) and

inter(X, /\3 7/3.7) = nzlnj E)\a:z’,)‘b:j S(Xaa Xb))
respectively, where 4 and j are cluster indices. We define our quality measure
I' € [0,1] (I < 0 in case of pathological /inverse clustering) as follows:

(n = k) - iy Dy 1 - inter(X, A, j)
n- Zle (n; — 1) - intra(X, A, %)

I'X,\) =1- 3)
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I' = 0 indicates that samples within the same cluster are on average not more
similar than samples from different clusters. On the contrary, I' = 1 describes a
clustering where every pair of samples from different clusters has the similarity
of 0 and at least one sample pair from the same cluster has a non-zero similarity.
Note that our definition of quality does not take the “amount of balance” into
account, since balancing is already observed fairly strictly by the constraints in
the graph-partitioning.

Finding the “right” number of clusters k for a data set is a difficult, and
often ill-posed, problem. In probabilistic approaches to clustering, likelihood-
ratios, Bayesian techniques and Monte Carlo cross-validation are popular. In
non-probabilistic methods, a regularization approach, which penalizes for large
k, is often adopted. To achieve a high quality I" as well as a low k, the target
function A € [0,1] is the product of the quality I" and a penalty term which
works very well in practice. Let n > 4 and 2 < k < |[n/2], then there exists
at least one clustering with no singleton clusters. The penalized quality gives
the performance A and is defined as A(k) = (1 — 28) . I'(k). A modest linear
penalty was chosen, since our quality criterion does not necessarily improve with
increasing k (as compared to the squared error criterion). For large n, we search
for the optimal k in the entire window from 2 < k < 100. In many cases,
however, a forward search starting at k¥ = 2 and stopping at the first down-tick
of performance while increasing k is sufficient.

6 Scalability and Parallel Implementation Issues

The graph metaphor for clustering is not only powerful but can also be imple-
mented in a highly scalable and parallel fashion. In the canonical implementation
of OPOSSUM, the most expensive step (in terms of both time and space) is the
computation of the similarity measure matrix, rather than the graph-based clus-
tering or post-processing steps! In the straightforward implementation, every
pair of samples need to be compared. Consequently, computational time com-
plexity is on the order of O(n?-d). In practice, sparsity enables a better (but still
O(n?)) performance characteristic. Moreover, if space (memory) is a problem,
the similarity matrix can be computed on the fly as the subsequent processing
does not involve batch operations.

A given coarse clustering (with a smaller number of clusters than the final k)
enables us to limit the similarity computation by only considering object pairs
within the same coarse cluster. In retail data such clusterings are often already in
place or can be induced fairly easily. Some examples include a pre-segmentation
of the customers into geographical regions, a demographic segmentation or an a
priori grouping by total revenue. Then, the complexity is reduced from O(n?) to
O(X;n2); where n; are the sizes of the coarse clusters. In particular, if k' coarse
clusterings of comparable sizes are present, then computation is reduced by a
factor of k'. If such a coarse clustering is not given a priori, a clustering could be
computed on a small representative subset of the data. Further incoming data
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points are then pre-clustered by assigning it to the closest neighboring centroid
using the extended Jaccard similarity semantic.

The graph partitioning algorithm for clustering is implemented using Metis.
The complexity is essentially determined by the number of edges (customer-pairs
with sufficient similarity), and thus it scales linearly with number of customers
if the number of non-zero edges per customer is about constant. Note that while
Euclidean based similarity induces a fully connected graph, non-Euclidean simi-
larity measures induce several orders of magnitude fewer edges. Two approaches
to reduce edges further have been prototyped successfully. On the one hand,
edges that do not exceed a domain specific global minimum weight are removed.
On the other hand, (if samples are approximately equally important) the v-
nearest neighbor subgraph can be created by removing all but the strongest v
edges for each vertex. Clearly, this reduces the number of vertices to the order
of O(kn). Extensive simulation results comparing Metis with a host of graph
partitioning algorithms are given in [11].

Parallel Implementation Considerations. Parallel implementation of
the all-pair similarity computation on SIMD or distributed memory processors
is trivial. It can be done in a systolic (at step 4, compare sample x with sample
z +1i mod n) or block systolic manner with essentially no overhead. Frameworks
such as MPI also provide native primitives for such computations. Parallelization
of Metis is also very efficient in [12], which reports partitioning of graphs with
over 7 million vertices (customers) in 7 seconds into 128 clusters on a 128 proces-
sor Cray T3E. This shows clearly that our graph-based approach to clustering
can be scaled to most real life customer segmentation applications.

7 Experimental Results

We experimented with real retail transactions of 21672 customers of a drugstore.
For the illustrative purpose of this paper, we randomly selected 2500 customers.
The total number of transactions (cash register scans) for these customers is
33814 over a time interval of three months. We rolled up the product hierarchy
once to obtain 1236 different products purchased. 15% of the total revenue is
contributed by the single item Financial-Depts which was removed because it
was too common. 473 of these products accounted for less than $25 each in toto
and were dropped. The remaining d = 762 features and n = 2466 customers
(34 customers had empty baskets after removing the irrelevant products) were
clustered using OPOSSUM.

OpPossuM’s results for this example are obtained with a 550 MHz Pentium
II PC with 512 MB RAM in under 10 seconds when similarity is precomputed.
Fig. 2 shows the similarity matrix (75% sparse) visualization before (a), after
generalized k-means clustering using the standard Jaccard (b), after sample bal-
anced (c), and after value balanced clustering (d). As the relationship-based
CLusION shows, OPossUM (¢), (d) gives more compact (better separation of on-
and off-diagonal regions) and perfectly balanced clusters as compared to, for ex-
ample, k-means (b). In k-means, the standard clustering algorithm (which can
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2466 customers 48 - 597
$126899 revenue $608 - $70443

(a)

i
L TR
122 - 125 28 - 203
$1624 - $14361 $6187 - $6609
(c) (d)

Figure 2. Results of clustering drugstore data. Relationship visualizations using CLU-
SION (a) before, (b) after k-means binary Jaccard, (c) after sample balanced OPoOsSSUM
(d) value balanced OPOSsuM clustering with k£ = 20. In (b) clusters are neither compact
nor balanced. In (c) and (d) clusters are very compact as well as balanced.
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be generalized by using —log(s?)) as distances), the clusters contain between 48
and 597 customers contributing between $608 and $70443 to revenue encumber-
ing a good overview of the customer behavior by marketing. Moreover clusters
are hardly compact: Brightness is only slightly better in the on-diagonal regions
in (b). All visualizations have been histogram equalized for printing purposes.
Fig. 3(a) shows how clustering performance behaves with increasing k. Optimal

®

(a) (b)

Figure 3. Drugstore data. (a): Behavior of performance A for various k using value
balanced clustering. The optimal k& is found at 20 and is marked with a dashed vertical
line. (b): 2-dimensional projection of 762—-dimensional data-points on the plane defined
by the centroids of the three value-balanced clusters 2 (o), 9 (x) and 20 (+).

performance is found at k = 20 for value balanced clustering. In figure 3(b) the
data points of the three clusters 2, 9 and 20 is projected onto a 2—dimensional
plane defined by the centroids of these three clusters (a la CViz [13]). In this ex-
tremely low dimensional projection, the three selected clusters can be reasonably
separated using just a linear discriminant function.

Table 1 gives profiles for two of the 20 value balanced customer clusters ob-
tained. A very compact and useful way of profiling a cluster is to look at their
most descriptive and their most discriminative features. This is done by looking
at a cluster’s highest revenue products and their most unusual revenue drivers.
Revenue lift is the ratio of the average spending on a product in a particular
cluster to the average spending in the entire data-set. In table 2 the top three de-
scriptive and discriminative products for the customers in all clusters are shown.
OProssuM identifies customer groups with very similar buying behavior. Market-
ing can use the customer groups to design and deploy personalized promotional
strategies for each group. The clusters are balanced by revenue value and hence
provide insight into the contributions and profiles of each customer group.

A detailed comparative study with other clustering methods has been omitted
here for lack of space. However, an extensive comparison of several methods on
high-dimensional data with similar characteristics, performed recently by us,
can be found in [9]. It is very clear that L, distance based or density estimation
based clustering techniques that are representative of the vast majority of data
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Table 1. Most descriptive (left) and most discriminative (right) products purchased
by the value balanced clusters C2 and Cy. Customers in C» spent $10 on average on
smoking cessation gum and spent more than 34 times more money on peanuts than
the average customer. Cluster Cg seems to contain strong christmas shoppers probably
families with kids.

[ [[value [ Tift | | [[value [ Tift ]
SMOKING-CESSATION-GUM(|10.153|34.732 SMOKING-CESSATION-GUM|[10.153[34.732
TP-CANNING|| 2.036 [18.738 BLOOD-PRESSURE-KITS|[ 1.690 [34.732
BLOOD-PRESSURE-KITS|| 1.690 [34.732 SNACKS/PNTS-NUTS]| 0.443 [34.732
TP-CASSETTE-RECORDER/PLAY || 1.689 | 9.752 TP-RAZOR-ACCESSORIES|| 0.338 |28.752

CZ DIABETIC-TESTS|| 1.521 [13.158 BABY-FORMULA-RTF|| 0.309 [28.404
TP-TOASTER/OVEN/FRY/POP[[ 1.169 [ 7.016 TP-CANNING|| 2.036 [18.738
BATT-ALKALINE(| 1.028 | 1.709 CONSTRUCTION-TOYS|| 0.855 |18.230
TP-SEASONAL-BOOTS|| 0.991 [ 1.424 PICNIC]|| 0.379 |18.208
SHELF-CHOCOLATES|| 0.927 | 7.924 CG-ETHNIC-FACE|| 0.350 [17.335
CHRISTMAS-FOOD|| 0.926 | 1.988 TP-PLACEMT,NAPKN,CHR-PADS]|| 0.844 [16.743

[ [[value | Tift ] | [[value [ Tift ]
CHRISTMAS-GIFTWARE||12.506[12.986 TP-FURNITURE]|| 0.454 |22.418
CHRISTMAS-HOME-DECORATION]|| 1.243 | 3.923 TP-ART&CRAFT-ALL-STORES|| 0.191 [13.772
CHRISTMAS-FOOD|| 0.965 | 2.071 TP-FAMILY-PLAN,CONTRACEPT]|| 0.154 |13.762
CHRISTMAS-LIGHT-SETS|| 0.889 | 1.340 TP-WOMENS-CANVAS/ATH-SHOE|| 0.154 [13.622

C9 BOY-TOYS|| 0.742 | 1.779 CHRISTMAS-GIFTWARE|[12.506]|12.986
AMERICAN-GREETINGS-CARDS|| 0.702 | 0.848 TP-CAMERAS|| 0.154 |11.803
GAMES|| 0.694 | 1.639 COMEDY || 0.154 [10.455

CHRISTMAS-CANDY|| 0.680 | 2.585 CHRISTMAS-CANDOLIERS|| 0.192 | 9.475
TP-SEASONAL-BOOTS|| 0.617 | 0.887 TP-INFANT-FORMULA /FOOD|| 0.107 | 8.761
CHRISTMAS-CANDLES|| 0.601 | 4.425 CHRISTMAS-MUSIC|| 0.091 | 8.625

mining approaches, do not work in the very high-dimensional spaces generated
by real-life market-basket data, and that graph partitioning approaches have
several advantages in this domain.

8 Concluding Remarks

OprossuM efficiently delivers clusters that are balanced in terms of either sam-
ples (customers) or value (revenue). Balancing clusters is very useful since each
cluster represents a number of data points of similar importance to the user. The
associated visualization toolkit CLUSION allows managers and marketers to get

Table 2. Overview over descriptive (left) and discriminative products (right) dominant
in each of the 20 value balanced clusters.

1 bath gift packs hair growth m boutique island 1 action items tp video comedy family items

2 smoking cessati tp canning item blood pressure 2 smoking cessati blood pressure snacks/pnts nut
3 vitamins other tp coffee maker underpads hea 3 underpads hea miscellaneous k tp irons items
4 games items facial moisturi tp wine jug ite 4 acrylics/gels/w tp exercise ite dental applianc
5 batt alkaline i appliances item appliances appl § appliances item housewares peg tp tarps items
6 christmas light appliances hair tp toaster/oven 6 multiples packs christmas light tv’s items

7 christmas food christmas cards cold bronchial 7 sleep aids item kava kava items tp beer super p
8 girl toys/dolls boy toys items everyday girls 8 batt rechargeab tp razors items tp metal cookwa
9 christmas giftw christmas home christmas food 9 tp furniture it tp art&craft al tp family plan
10 christmas giftw christmas light pers cd player 10 pers cd player tp plumbing ite umbrellas adult
11 tp laundry soap facial cleanser hand&body thera 11 cat litter scoo child acetamino pro treatment i
12 film cameras it planners/calend antacid h2 bloc 12 heaters items laverdiere ca  ginseng items
13 tools/accessori binders items drawing supplie 13 mop/broom lint halloween cards tools/accessori
14 american greeti paperback items fragrances op 14 dental repair k tp lawn seed it tp telephones/a
15 american greeti christmas cards basket candy it 15 gift boxes item hearing aid bat american greeti
16 tp seasonal boo american greeti valentine box c 16 economy diapers tp seasonal boo girls socks ite
17 vitamins e item group stationer tp seasonal boo 17 tp wine 1.51 va group stationer stereos items
18 halloween bag c basket candy it cold cold items 18 tp med oint/liq tp dinnerware i tp bath towels
19 hair clr perman american greeti revlon cls face 19 hair clr perman covergirl imple tp power tools
20 revlon cls face hair clr perman headache ibupro 20 revlon cls face telephones cord ardell lashes i
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an intuitive visual impression of the group relationships and customer behavior
extracted from the data. This is very important for the tool to be accepted and
applied by a wider community. The OpossuM / CLUSION combine has been suc-
cessfully applied to several real-life market-baskets. We are currently working on
an on-line version of OP0OSSUM that incrementally updates clusters as new data
points become available. Moreover, modifications for improved scale-up to very
large numbers of transactions, using parallel data-flow approaches are currently
being investigated.
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