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In several real-life data-mining applications, data reside in very high (1000 or more) dimen-
sional space, where both clustering techniques developed for low-dimensional spaces

(k-means, BIRCH, CLARANS, CURE, DBScan, etc.) as well as visualization methods such
as parallel coordinates or projective visualizations, are rendered ineffective. This paper pro-
poses a relationship-based approach that alleviates both problems, side-stepping the “curse-
of-dimensionality” issue by working in a suitable similarity space instead of the original
high-dimensional attribute space. This intermediary similarity space can be suitably tai-
lored to satisfy business criteria such as requiring customer clusters to represent comparable
amounts of revenue. We apply efficient and scalable graph-partitioning-based clustering
techniques in this space. The output from the clustering algorithm is used to re-order the
data points so that the resulting permuted similarity matrix can be readily visualized in two
dimensions, with clusters showing up as bands. While two-dimensional visualization of a
similarity matrix is by itself not novel, its combination with the order-sensitive partitioning
of a graph that captures the relevant similarity measure between objects provides three
powerful properties: (i) the high-dimensionality of the data does not affect further process-
ing once the similarity space is formed; (ii) it leads to clusters of (approximately) equal
importance, and (iii) related clusters show up adjacent to one another, further facilitating
the visualization of results. The visualization is very helpful for assessing and improving
clustering. For example, actionable recommendations for splitting or merging of clusters
can be easily derived, and it also guides the user toward the right number of clusters.
Results are presented on a real retail industry dataset of several thousand customers and
products, as well as on clustering of web-document collections and of web-log sessions.
(Cluster Analysis; Graph Partitioning; High Dimensional; Visualization; Retail Customers; Text
Mining; Web-Log Analysis)

1. Introduction
Knowledge discovery in databases often requires
clustering the data into a number of distinct seg-
ments or groups in an effective and efficient man-
ner. Good clusters show high similarity within a
group and low similarity between any two different

groups. Besides producing good clusters, certain clus-
tering methods provide additional useful benefits.
For example, Kohonen’s self-organizing feature map
(SOM) (Kohonen 1990) imposes a logical, “topo-
graphic” ordering on the cluster centers such that cen-
ters that are nearby in the logical ordering represent

0899-1499/02/0000/0001$5.00
1526-5528 electronic ISSN

INFORMS Journal on Computing © 2002 INFORMS
Vol. 00, No. 0, Xxxxx 2002 pp. 1–23



STREHL AND GHOSH
Relationship-Based Clustering and Visualization for High-Dimensional Data Mining

nearby clusters in the feature space. A popular choice
for the logical ordering is a two-dimensional lat-
tice that allows all the data points to be projected
onto a two-dimensional plane for convenient visual-
ization (Haykin 1999). While clustering is a classical
and well-studied area, it turns out that several data-
mining applications pose some unique challenges that
severely test traditional techniques for clustering and
cluster visualization. For example, consider the fol-
lowing two applications:
1. Grouping customers based on buying behavior

to provide useful marketing decision-support knowl-
edge, especially in e-business applications where
electronically observed behavioral data are readily
available. Customer clusters can be used to identify
up-selling and cross-selling opportunities with exist-
ing customers (Lawrence et al. 2001).
2. Facilitating efficient browsing and searching of

the web by hierarchically clustering web pages. The
challenges in both of these applications mainly arise
from two aspects: (a) large sample size, n, and (b)
each sample having a large number of attributes or fea-
tures (dimensions, d). Certain data-mining applica-
tions have the additional challenge of how to deal
with seasonality and other temporal variations in the
data. This aspect is not within the scope of this paper,
but see Gupta and Ghosh (2001) for a solution for
retail data.
The first aspect is typically dealt with by subsampling
the data, exploiting summary statistics, aggregating
or “rolling up” to consider data at a coarser resolu-
tion, or by using approximating heuristics that reduce
computation time at the cost of some loss in quality.
See Han et al. (2001), Chapter 8 for several examples
of such approaches.
The second aspect is typically addressed by reduc-

ing the number of features, by either selection of a
subset based on a suitable criteria, or by transforming
the original set of attributes into a smaller one using
linear projections (e.g., principal component analy-
sis (PCA)) or through non-linear (Chang and Ghosh
2001) means. Extensive approaches for feature selec-
tion or extraction have been long studied, particularly
in the pattern-recognition community (Young and
Calvert 1974, Mao and Jain 1995, Duda et al. 2001). If
these techniques succeed in reducing the number of

(derived) features to the order of 10 or less without
much loss of information, then a variety of cluster-
ing and visualization methods can be applied to this
reduced-dimensionality feature space. Otherwise, the
problem may still be tractable if the data are faithful
to certain simplifying assumptions, most notably that
either (i) the features are class- or cluster-conditionally
independent, or that (ii) most of the data can be
accounted for by a two- or three-dimensional man-
ifold within the high-dimensional embedding space.
The simplest example of case (i) is where the data
are well characterized by the superposition of a small
number of Gaussian components with identical and
isotropic covariances, in which case k-means can be
directly applied to a high-dimensional feature space
with good results. If the components have different
covariance matrices that are still diagonal (or else the
number of parameters will grow quadratically), unsu-
pervised Bayes or mixture-density modeling with EM
can be fruitfully applied. For situation (ii), nonlinear
PCA, self-organizing map (SOM), multi-dimensional
scaling (MDS), or more efficient custom formulations
such as FASTMAP (Faloutsos and Lin 1995), can be
effectively applied. For further description of these
methods, see Section 7 on related work.
This paper primarily addresses the second aspect

by describing an alternate way of clustering and visu-
alization when, even after feature reduction, one is left
with hundreds of dimensions per object (and further
reduction will significantly degrade the results), and
moreover, simplifying data-modeling assumptions are
also not valid. In such situations, one is truly faced
with the “curse of dimensionality” issue (Friedman
1994). We have repeatedly encountered such situa-
tions when examining retail industry market-basket
data for behavioral customer clustering, and also cer-
tain web-based data collection.
Since clustering basically involves grouping objects

based on their inter-relationships or similarities, one
can alternatively work in similarity space instead of the
original feature space. The key insight in this work
is that if one can find a similarity measure (derived
from the object features) that is appropriate for the
problem domain, then a single number can capture
the essential “closeness” of a given pair of objects,
and any further analysis can be based only on these
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numbers. The similarity space also lends itself to a
simple technique to visualize the clustering results.
A major contribution of this paper is to demonstrate
that this technique has increased power when the
clustering method used contains ordering information
(e.g., top-down). Popular clustering methods in fea-
ture space are either non-hierarchical (as in k-means),
or bottom-up (agglomerative clustering). However, if
one transforms the clustering problem into a related
problem of partitioning a similarity graph, several
powerful partitioning methods with ordering proper-
ties (as described in the introductory paragraph) can
be applied. Moreover, the overall framework is quite
generally applicable if one can determine the appro-
priate similarity measure for a given situation. This
paper applies it to three different domains (i) cluster-
ing market-baskets, (ii) web-documents, and (iii) web-
logs. In each situation, a suitable similarity measure
emerges from the domain’s specific needs.
The overall technique for clustering and visualiza-

tion is linear in the number of dimensions, but it is
quadratic, both in computational and storage com-
plexity, with respect to the number of data points, n.
This can become problematic for very large databases.
Several methods for reducing this complexity are out-
lined in Section 6, but not elaborated upon much as
that is not the primary focus of this present work.
To concretize some of the remarks above and moti-

vate the rest of the paper, let us take a closer look
at transactional data. A large market-basket database
may involve thousands of customers and product-
lines. Each record corresponds to a store visit by a cus-
tomer, so that customer could have multiple entries
over time. The transactional database can be concep-
tually viewed as a sparse representation of a prod-
uct (feature) by customer (object) matrix. The �i� j�th
entry is non-zero only if customer j bought product
i in that transaction. In that case, the entry repre-
sents pertinent information such as quantity bought
or extended price (quantity × price) paid.
Since most customers only buy a small subset of

these products during any given visit, the correspond-
ing feature vector (column) describing such a transac-
tion is high-dimensional (large number of products),
but sparse (most features are zero). Also, transactional
data typically have significant outliers, such as a few

big corporate customers that appear in an otherwise
small retail customer data. Filtering these outliers may
not be easy, nor desirable since they could be very
important (e.g., major revenue contributors). In addi-
tion, features are often neither nominal, nor continu-
ous, but have discrete positive ordinal attribute val-
ues, with a strongly non-Gaussian distribution.
One way to reduce the feature space is only to

consider the most dominant products (attribute selec-
tion), but in practice this may still leave hundreds of
products to be considered. And since product popu-
larity tends to follow a Zipf distribution (Zipf 1929),
the tail is “heavy,” meaning that revenue contribution
from the less-popular products is significant for cer-
tain customers. Moreover, in retail the higher profit
margins are often associated with less popular prod-
ucts. One can do a “roll-up” to reduce the number of
products, but with a corresponding loss in resolution
or granularity. Feature extraction or transformation is
typically not carried out as derived features lose the
semantics of the original ones as well as the sparsity
property.
The alternative to attribute reduction is to try “sim-

plification via modeling.” One approach would be only
to consider binary features (bought or not). This
reduces each transaction to an unordered set of the
purchased products. Thus, one can use techniques
such as the a priori algorithm to determine associa-
tions or rules. In fact, this is currently the most pop-
ular approach to market-basket analysis (Berry and
Linoff 1997, Chapter 8). Unfortunately, this results
in loss of vital information: One cannot differentiate
between buying one gallon of milk and 100 gallons of
milk, or one cannot weight importance between buy-
ing an apple vs. buying a car, though clearly these are
very different situations from a business perspective.
In general, association-based rules derived from such
sets will be inferior when revenue or profits are the
primary performance indicators, since the simplified
data representation loses information about quantity,
price, or margins. The other broad class of modeling
simplifications for market-basket analysis is based on
taking a macro-level view of the data having charac-
teristics capturable in a small number of parameters.
In retail, a five-dimensional model for customers com-
posed from indicators for recency, frequency, mone-
tary value, variety, and tenure (RFMVT) is popular.
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However, this useful model is at a much lower res-
olution that looking at individual products and fails
to capture actual purchasing behavior in more com-
plex ways such as taste/brand preferences, or price
sensitivity,
Due to all the above issues, traditional vector-space-

based clustering techniques work poorly on real-
life market-basket data. For example, a typical result
of hierarchical agglomerative clustering (both single-
link and complete-link approaches) on market-basket
data is to obtain one huge cluster near the origin,
since most customers buy very few items, and a few
scattered clusters otherwise. Applying k-means could
forcibly split this huge cluster into segments depend-
ing on the initialization, but not in a meaningful man-
ner. In contrast, the similarity-based methods for both
clustering and visualization proposed in this paper
yield far better results for such transactional data.
While the methods have certain properties tailored
to such datasets, they can also be applied to other
higher-dimensional datasets with similar characteris-
tics. This is illustrated by results on clustering text
documents, each characterized by a “bag of words”
and represented by a vector of (suitably normalized)
term occurrences, often 1000 or more in length. Our
detailed comparative study in (Strehl et al. 2001)
showed that in this domain too traditional clustering
techniques had some difficulties, though not as much
as for market-basket data since simplifying assump-
tions regarding class or cluster conditional indepen-
dence of features are not violated as much, and con-
sequently both Naive Bayes (McCallum and Nigam
1998) and a normalized version of k-means (Dhillon
and Modha 2001) also show decent results. We also
apply the technique to clustering visitors to a web-
site based on their footprints, where, once a domain-
specific suitable similarity metric is determined, the
general technique again provides nice results.
We begin by considering domain-specific transfor-

mations into similarity space in Section 2. Section 3
describes a specific clustering technique (Opossum),
based on a multi-level graph partitioning algorithm
(Karypis and Kumar 1998). In Section 4, we describe
a simple but effective visualization technique that is
applicable to similarity spaces (Clusion). Clustering
and visualization results are presented in Section 5.

In Section 6, we consider system issues and briefly
discuss several strategies to scale Opossum for large
datasets. Section 7 summarizes related work in clus-
tering, graph partitioning, and visualization.

2. Domain-Specific Features
and Similarity Space

2.1. Notation
Let n be the number of objects/samples/points (e.g.,
customers, documents, web-sessions) in the data and
d the number of features (e.g., products, words, web-
pages) for each sample xj with j ∈ 	1� 
 
 
 �n�. Let k be
the desired number of clusters. The input data can
be represented by a d×n data matrix X with the jth
column vector representing the sample xj . x

†
j denotes

the transpose of xj . Hard clustering assigns a label
j ∈ 	1� 
 
 
 � k� to each d-dimensional sample xj , such
that similar samples get the same label. In general
the labels are treated as nominals with no inherent
order, though in some cases, such as one-dimensional
SOMs, any top-down recursive bisection approach as
well as our proposed method, the labeling contains
extra ordering information. Let �� denote the set of
all objects in the �th cluster (� ∈ 	1� 
 
 
 � k�), with xj ∈
�� ⇔ j = � and n� = ����.

2.2. Process
Figure 1 gives an overview of our relationship-based
clustering process from a set of raw object descrip-
tions � (residing in input space �) via the vector
space description X (in feature space � ) and rela-
tionship description S (in similarity space � ) to the

cluster labels � (in output space ��� �� ∈ �n�
�→ �X ∈

� n⊂�d×n�
�→ �S∈� n×n= �0�1�n×n⊂�n×n�

�→ ��∈�n=
	1� 
 
 
 � k�n�. For example in web-page clustering, �
is a collection of n web-pages xj with j ∈ 	1� 
 
 
 �n�.

Figure 1 The Relationship-Based Clustering Framework
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Extracting features using � yields X, the term fre-
quencies of stemmed words, normalized such that for
all documents x � �x�2 = 1. Similarities are computed,
using, e.g., cosine-based similarity � yielding the n×
n similarity matrix S. Finally, the cluster label vector
� is computed using a clustering function �, such as
graph-partitioning. In short, the basic process can be

denoted as �
�→ X

�→ S
�→ �.

2.3. Similarity Measures
In this paper, we work in similarity space rather than
the original vector space in which the feature vectors
reside. A similarity measure captures the relationship
between two d-dimensional objects in a single num-
ber (using on the order of non-zeros or d, at worst,
computations). Once this is done, the original high-
dimensional space is not dealt with at all, we only
work in the transformed similarity space, and subse-
quent processing is independent of d.
A similarity measure ∈ �0�1� captures how related

two data points xa and xb are. It should be symmetric
(s�xa�xb� = s�xb�xa�), with self-similarity s�xa�xa� = 1.
However, in general, similarity functions (respectively
their distance function equivalents �=√− log�s�, see
below) do not obey the triangle inequality.
An obvious way to compute similarity is through

a suitable monotonic and inverse function of a
Minkowski (Lp) distance, �. Candidates include s =
1/�1+�� and s = e−�2 , the latter being preferable due
to maximum-likelihood properties (Strehl et al. 2000).
Similarity can also be defined by the cosine of the
angle between two vectors:

s�C��xa�xb�=
x†axb

�xa�2 · �xb�2
(1)

Cosine similarity is widely used in text clustering
because two documents with the same proportions
of term occurrences but different lengths are often
considered identical. In retail data such normalization
loses important information about the life-time cus-
tomer value, and we have recently shown that the
extended Jaccard similarity measure is more appropri-
ate (Strehl et al. 2000). For binary features, the Jaccard
coefficient (Jain and Dubes 1988) measures the ratio
of the intersection of the product sets to the union of

the product sets corresponding to transactions xa and
xb, each having binary (0/1) elements.

s�J��xa�xb�=
x†axb

�xa�22+�xb�22−x†axb
(2)

The extended Jaccard coefficient is also given by (2),
but allows elements of xa and xb to be arbitrary pos-
itive real numbers. This coefficient captures a vector-
length-sensitive measure of similarity. However, it is
still invariant to scale (dilating xa and xb by the same
factor does not change s�xa�xb�). A detailed discussion
of the properties of various similarity measures can be
found in Strehl et al. (2000), where it is shown that the
extended Jaccard coefficient is particularly well suited
for market-basket data.
Since, for general data distributions, one cannot

avoid the “curse of dimensionality,” there is no sim-
ilarity metric that is optimal for all applications.
Rather, one needs to determine an appropriate mea-
sure for the given application, that captures the essen-
tial aspects of the class of high-dimensional data dis-
tributions being considered.

3. OPOSSUM
In this section, we present Opossum (Optimal
Partitioning of Sparse Similarities Using Metis),
a similarity-based clustering technique particularly
tailored to market-basket data. Opossum differs
from other graph-based clustering techniques by
application-driven balancing of clusters, non-metric
similarity measures, and visualization driven heuris-
tics for finding an appropriate k.

3.1. Balancing
Typically, one segments transactional data into seven
to 14 groups, each of which should be of comparable
importance. Balancing avoids trivial clusterings (e.g.,
k− 1 singletons and one big cluster). More impor-
tantly, the desired balancing properties have many
application-driven advantages. For example when
each cluster contains the same number of customers,
discovered phenomena (e.g., frequent products, co-
purchases) have equal significance/support and are
thus easier to evaluate. When each customer cluster
equals the same revenue share, marketing can spend
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an equal amount of attention and budget to each of
the groups. Opossum strives to deliver “balanced”
clusters using either of the following two criteria:
• Sample balanced: Each cluster should contain
roughly the same number of samples, n/k. This
allows, for example, retail marketers to obtain a
customer segmentation with equally-sized customer
groups.
• Value balanced: Each cluster should contain roughly
the same amount of feature values. Thus, a cluster
represents a kth fraction of the total feature value
v = ∑n

j=1
∑d

i=1 xi� j . In customer clustering, we use
extended price per product as features and, thus,
each cluster represents a roughly equal contribution
to total revenue. In web-session clustering the feature
of choice is the time spent on a particular web-page.
This results in user clusters balanced with respect to
the total time spent on the site.
We formulate the desired balancing properties by

assigning each object (customer, document, web-
session) a weight and then softly constrain the sum of
weights in each cluster. For sample-balanced cluster-
ing, we assign each sample xj the same weight wj =
1/n. To obtain value balancing properties, a sample
xj ’s weight is set to wj = 1

v

∑d
i=1 xi� j . Please note that

the sum of weights for all samples is one.

3.2. Vertex-Weighted Graph Partitioning
We map the problem of clustering to partitioning a
vertex weighted graph � into k unconnected compo-
nents of approximately equal size (as defined by the
balancing constraint) by removing a minimal amount
of edges. The objects to be clustered are viewed as a
set of vertices 	 = 	x1� 
 
 
 �xn�. Two vertices xa and
xb are connected with an undirected edge �a� b� ∈ 

of positive weight given by the similarity s�xa�xb�.
This defines the graph � = �	 �
�. An edge separa-
tor  
 is a set of edges whose removal splits the
graph � into k pair-wise unconnected components
(sub-graphs) 	�1� 
 
 
 ��k�. All sub-graphs ��= �	��
��
have pairwise disjoint sets of vertices and edges. The
edge separator for a particular partitioning includes
all the edges that are not part of any sub-graph, or
 
= �
\�
1∪
2∪· · ·∪
k��. The clustering task is thus
to find an edge separator with a minimum sum of

edge weights, which partitions the graph into k dis-
joint pieces. The following equation formalizes this
minimum-cut objective:

min
 


∑
�a� b�∈ 


s�xa�xb� (3)

Without loss of generality, we can assume that the
vertex weights wj are normalized to sum to one:∑n

j=1wj = 1. While striving for the minimum-cut
objective, the balancing constraint

k max
�∈	1�


�k�

∑
j=�

wj ≤ t (4)

has to be fulfilled. The left-hand side of the inequality
is called the imbalance (the ratio of the biggest cluster
in terms of cumulative normalized edge weight to the
desired equal cluster size 1/k) and has a lower bound
of one. The balancing threshold t enforces perfectly
balanced clusters for t= 1. In practice t is often chosen
to be slightly greater than one (e.g., we use t = 1
05
for all our experiments which allows at most 5% of
imbalance).
Thus, in graph partitioning one has essentially to

solve a constrained optimization problem. Finding
such an optimal partitioning is an NP-hard problem
(Garey and Johnson 1979). However, there are fast,
heuristic algorithms for this widely studied problem.
We experimented with the Kernighan-Lin (KL) algo-
rithm, recursive spectral bisection, and multi-level
k-way partitioning (Metis).
The basic idea in KL (Kernighan and Lin 1970) to

dealing with graph partitioning is to construct an ini-
tial partition of the vertices either randomly or accord-
ing to some problem-specific strategy. Then the algo-
rithm sweeps through the vertices, deciding whether
the size of the cut would increase or decrease if we
moved this vertex x over to another partition. The
decision to move x can be made in time proportional
to its degree by simply counting whether more of x’s
neighbors are on the same partition as x or not. Of
course, the desirable side for x will change if many
of its neighbors switch, so multiple passes are likely
to be needed before the process converges to a local
optimum.

6 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2002



STREHL AND GHOSH
Relationship-Based Clustering and Visualization for High-Dimensional Data Mining

In recursive bisection, a k-way split is obtained
by recursively partitioning the graph into two sub-
graphs. Spectral bisection (Pothen et al. 1990, Hen-
drickson and Leland 1995) uses the eigenvector asso-
ciated with the second smallest eigenvalue of the
graph’s Laplacian (Fiedler vector) (Fiedler 1975) for
splitting.
Metis (Karypis and Kumar 1998) handles multi-

constraint multi-objective graph partitioning in three
phases: coarsening, initial partitioning, and refining.
First a sequence of successively smaller and there-
fore coarser graphs is constructed through heavy-
edge matching. Second, the initial partitioning is con-
structed using one out of four heuristic algorithms
(three based on graph growing and one based on
spectral bisection). In the third phase the coarsened
partitioned graph undergoes boundary Kernighan-
Lin refinement. In this last phase vertices are swapped
only among neighboring partitions (boundaries). This
ensures that neighboring clusters are more related
than non-neighboring clusters. This ordering prop-
erty is beneficial for visualization, as explained in Sec-
tion 6.1. In contrast, since recursive bisection com-
putes a bisection of a subgraph at a time, its view is
limited. Thus, it cannot fully optimize the partition
ordering and the global constraints. This renders it
less effective for our purposes. Also, we found the
multi-level partitioning to deliver the best partition-
ings as well as to be the fastest and most scalable
of the three choices we investigated. Hence, Metis is
used as the graph-partitioner in Opossum.

3.3. Determining the Number of Clusters
Finding the “right” number of clusters k for a
dataset is a difficult and often ill-posed problem,
since even for the same data set, there can be sev-
eral answers depending on the scale or granularity in
which one is interested. In probabilistic approaches
to clustering, likelihood-ratios, Bayesian techniques,
and Monte Carlo cross-validation are popular. In
non-probabilistic methods, a regularization approach,
which penalizes for large k, is often adopted. If the
data are labelled, then mutual information between
cluster and class labels can be used to determine the
number of clusters. Other metrics such as purity of
clusters or entropy are of less use as they are biased

towards a larger number of clusters (Strehl et al.
2000).
For transactional data, the number is often speci-

fied by the end-user to be typically between seven
and 14 (Berry and Linoff 1997). Otherwise, one can
employ a suitable heuristic to obtain an appropriate
value of k during the clustering process. This section
describes how we find a desirable clustering, with
high overall cluster quality "�Q� and a small number of
clusters k. Our objective is to maximize intra-cluster
similarity and minimize inter-cluster similarity, given
by intra�X��� i� = 2

�ni−1�·ni
∑

a=b=i� b>a s�xa�xb� and
inter�X��� i� j� = 1

ni ·nj
∑

a=i�b=j s�xa�xb�, respectively,
where i and j are cluster indices. Note that intra-
cluster similarity is undefined (0/0) for singleton clus-
ters. Hence, we define our quality measure "�Q� ∈ �0�1�
("�Q� < 0 in case of pathological/inverse clustering)
based on the ratio of weighted average inter-cluster
to weighted average intra-cluster similarity:

"�Q��X���

=1−
∑k

i=1
ni
n−ni

∑
j∈	1�


�i−1�i+1�


�k�nj ·inter�X���i�j�∑k

i=1ni ·intra�X���i�
(5)

"�Q�= 0 indicates that samples within the same cluster
are on average not more similar than samples from
different clusters. On the contrary, "�Q� = 1 describes
a clustering where every pair of samples from dif-
ferent clusters has the similarity of zero and at least
one sample pair from the same cluster has a non-zero
similarity. Note that our definition of quality does not
take the “amount of balance” into account, since bal-
ancing is already observed fairly strictly by the con-
straints in the graph-partitioning step.
To achieve a high quality "�Q� as well as a low k,

the target function "�T� ∈ �0�1� is the product of the
quality "�Q� and a penalty term that works very well
in practice. If n≥ 4 and 2≤ k≤ �n/2�, then there exists
at least one clustering with no singleton clusters. The
penalized quality gives the penalized quality "�T� and
is defined as "�T��k�= �1− 2k

n
�"�Q��k�. A modest linear

penalty was chosen, since our quality criterion does
not necessarily improve with increasing k (unlike e.g.,
the squared error criterion). For large n, we search for
the optimal k in the entire window from 2 ≤ k ≤ 100.
In many cases, however, a forward search starting at
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k= 2 and stopping at the first down-tick of penalized
quality while increasing k is sufficient.
Finally, a practical alternative, as exemplified by the

experimental results later, is first to over-cluster and
then use the visualization aid to combine clusters as
needed (Section 5.2).

4. CLUSION: Cluster
Visualization

In this Section, we present our visualization tool,
highlight some of its properties, and compare it with
some popular visualization methods. Applications of
this tool are illustrated in Section 5.

4.1. Coarse Seriation
When data are limited to two or three dimensions, the
most powerful tool for judging cluster quality is usu-
ally the human eye. Clusion, our CLUSter visualiza-
tION toolkit, allows us to convert high-dimensional
data into a perceptually more suitable format, and
employ the human vision system to explore the rela-
tionships in the data, guide the clustering process, and
verify the quality of the results. In our experience with
two years of Dell customer data, we found Clusion
effective for getting clusters balanced w.r.t. number of
customers or net dollar ($) amount, and even more so
for conveying the results to marketing management.
Clusion looks at the output of a clustering rou-

tine �, reorders the data points such that points with
the same cluster label are contiguous, and then visu-
alizes the resulting permuted similarity matrix, S′.
More formally, the original n×n similarity matrix S
is permuted with an n×n permutation matrix P. The
entries pi� j of P are defined as follows:

pi� j =



1 if j =

i∑
a=1
la�i +

i−1∑
�=1

n�

0 otherwise

(6)

The definition of an entry pi� j is based on the entries
li� j of a binary matrix representation of the cluster
label vector �. The binary n× k cluster membership
indicator matrix L is defined by each entry li� j :

li� j =
{
1 if i = j

0 otherwise
(7)

In other words, pi� j is 1 if j is the sum of the number
of points among the first i that belong to the same
cluster and the number of points in the first i − 1
clusters. Now, the permuted similarity matrix S′ and
the corresponding label vector �′ and data matrix X′

are:
S′ = PSP†� �′ = P�� X′ = PX (8)

For a “good” clustering algorithm and k→ n this
is related to sparse matrix reordering, for this results
in the generation of a “banded matrix” where high
entries should all fall near the diagonal line from the
upper left to the lower right of the matrix. Since (8) is
essentially a partial-ordering operation we also refer
to it as coarse seriation, a phrase used in disciplines
such as anthropology and archaeology to describe the
reordering of the primary data matrix so that similar
structures (e.g., genetic sequences) are brought closer
(Murtagh 1985, Eisen et al. 1998).

4.2. Visualization
The seriation of the similarity matrix, S′, is very useful
for visualization. Since the similarity matrix is two-
dimensional, it can be readily visualized as a gray-
level image where a white (black) pixel corresponds
to minimal (maximal) similarity of 0 (1). The darkness
(gray level value) of the pixel at row a and column
b increases with the similarity between the samples
xa and xb. When looking at the image it is useful to
consider the similarity s as a random variable tak-
ing values from 0 to 1. The expected similarity within
cluster � is thus represented by the average intensity
within a square region with side length n�, around the
main diagonal of the matrix. The off-diagonal rect-
angular areas visualize the relationships between clus-
ters. The brightness distribution in the rectangular
areas yields insight towards the quality of the clus-
tering and possible improvements. In order to make
these regions apparent, thin black horizontal and ver-
tical lines are used to show the divisions into the rect-
angular regions. Visualizing similarity space in this
way can help to get a feel quickly for the clusters in
the data. Even for a large number of points, a sense
for the intrinsic number of clusters k in a dataset can
be gained.
Figure 2 shows Clusion output in four extreme

scenarios to provide a feel for how data properties
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Figure 2 Illustrative Clusion Patterns in Original Order and Seriated Using Optimal Bipartitioning Are Shown in the Left Two Columns. The Right Four
Columns Show Corresponding Similarity Distributions. In Each Example There Are 50 Objects: (a) No Natural Clusters (Randomly Related
Objects), (b) Set of Singletons (Pairwise Near Orthogonal Objects), (c) One Natural Cluster (Unimodal Gaussian), (d) Two Natural Clusters
(Mixture of Two Gaussians)

translate to the visual display. Without loss of gener-
ality, we consider the partitioning of a set of objects
into two clusters. For each scenario, on the left-hand
side the original similarity matrix S and the seriated
version S′ (Clusion) for an optimal bipartitioning is
shown. On the right-hand side four histograms for the
distribution of similarity values s, which range from
0 to 1, are shown. From left to right, we have plotted:
distribution of s over the entire data, within the first
cluster, within the second cluster, and between first
and second cluster. If the data are naturally clustered
and the clustering algorithm is good, then the middle
two columns of plots will be much more skewed to
the right as compared to the first and fourth columns.
In our visualization this corresponds to brighter off-
diagonal regions and darker block-diagonal regions
in S′ as compared to the original S matrix.
The proposed visualization technique is quite pow-

erful and versatile. In Figure 2(a) the chosen similarity

behaves randomly. Consequently, no strong visual dif-
ference between on- and off-diagonal regions can be
perceived with Clusion in S′. It indicates cluster-
ing is ineffective, which is expected since there is no
structure in the similarity matrix. Figure 2(b) is based
on data consisting of pair-wise almost equi-distant
singletons. Clustering into two groups still renders
the on-diagonal regions very bright, suggesting more
splits. In fact, this will remain unchanged until each
data point is a cluster by itself, thus revealing the
singleton character of the data. For monolithic data
(Figure 2(c)), many strong similarities are indicated by
an almost uniformly dark similarity matrix S. Split-
ting the data results in dark off-diagonal regions in
S′. A dark off-diagonal region suggests that the clus-
ters in the corresponding rows and columns should
be merged (or not be split in the first place). Clu-
sion indicates that these data are actually one large
cluster. In Figure 2(d), the gray-level distribution of S

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2002 9
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Figure 3 Comparison of Cluster-Visualization Techniques. All Tools Work Well on the Four-Dimensional IRIS Data (a). But on the 2903-Dimensional
Yahoo! News-Document Data (b), Only Clusion Reveals that Clusters 1 and 2 Are Actually Highly Related, Cluster 3 Is Strong and Interdis-
ciplinary, 4 Is Weak, and 5 Is Strong

exposes bright as well as dark pixels, thereby recom-
mending it should be split. In this case, k = 2 appar-
ently is a very good choice (and the clustering algo-
rithm worked well) because in S′ on-diagonal regions
are uniformly dark and off-diagonal regions are uni-
formly bright.
This induces an intuitive mining process that

guides the user to the “right” number of clusters. A
too small value of k leaves the on-diagonal regions
heterogeneous. On the contrary, growing k beyond
the natural number of clusters will introduce dark
off-diagonal regions. Finally, Clusion can be used
to compare visually the appropriateness of different
similarity measures. Let us assume, for example, that
each row in Figure 2 illustrates a particular way of
defining similarity for the same dataset. Then, Clu-
sion makes visually apparent that the similarity mea-
sure in (d) lends itself much better for clustering than
do the measures illustrated in rows (a), (b), and (c).

4.3. Comparison
Clusion gives a relationship-centered view, as con-
trasted with common projective techniques, such as
the selection of dominant features or optimal linear
projections (PCA), which are object-centered. In Clu-
sion, the actual features are not visualized; instead,
all pair-wise relationships, the relevant aspect for the
purpose of clustering, are displayed.

Figure 3 compares Clusion with some other popu-
lar visualizations. In Figure 3(a) the parallel axis, PCA
projection, CViz (projection through plane defined by
centroids of clusters 1, 2, and 3) as well as Clusion
succeed in visualizing the IRIS data. Membership in
cluster 1/2/3 is indicated by black/dark gray/light
gray (parallel axis), black/dark gray/light gray and
shapes �/×/+ (PCA and CViz), and position on diag-
onal from upper left to lower right corner (Clu-
sion), respectively. All four tools succeed in visualiz-
ing three clusters and making apparent that clusters
2 and 3 are closer than any other and cluster 1 is very
compact.
Figure 3(b) shows the same comparison for 293

documents from which 2903 word frequencies were
extracted to be used as features. In fact, these data
consist of five clusters selected from 40 clusters
extracted from a Yahoo! news-document collection
that will be described in more detail in Section 5.2.
Extra gray shades and the shapes �/∗ have been
added to indicate cluster 4/5, respectively. The paral-
lel axis plot becomes useless clutter due to the high
number of dimensions as well as the large num-
ber of objects. PCA and CViz succeed in separating
three clusters each (2, 3, 5, and 1, 2, 3, respectively)
and show all others superimposed on the axis ori-
gin. For example, cluster 4 can hardly be seen in
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the PCA projection and CViz. They give no sugges-
tions towards which clusters are compact or which
clusters are related. Only Clusion suggests that clus-
ters 1 and 2 are actually highly related, cluster 3 is
interdisciplinary, 4 is weak, and 5 is a strong cluster.
And indeed, when looking at the cluster descriptions
(which might not be so easily available and under-
standable in all domains), the intuitive interpretations
revealed by Clusion are proven to be very true:

Cluster Dominant category Purity Entropy Most frequent word stems

1 health (H) 100% 0�00 hiv, depress, immun
2 health (H) 100% 0�00 weight, infant, babi
3 online (o) 58% 0�43 apple, intel, electron
4 film (f) 38% 0�72 hbo, ali, alan
5 television (t) 83% 0�26 household, sitcom, timeslot

Note that the majority category, purity, and entropy
are available only where a supervised categoriza-
tion is given. Of course, the categorization cannot be
used to tune the clustering. Clusters 1 and 2 con-
tain only documents from the Health category so they
are highly related. The fourth cluster, which is indi-
cated to be weak by Clusion, has in fact the low-
est purity in the group with 38% of documents from
the most dominant category (film). Clusion also sug-
gests that cluster 3 is not only strong, as indicated
by the dark diagonal region, but also has distinctly
above-average relationships to all the other four clus-
ters. On inspecting the word stems typifying this clus-
ter (Apple, Intel, and electron(ics)) it is apparent that
this is because of the interdisciplinary appearance
of technology-savvy words in recent news releases.
Since such cluster descriptions might not be so eas-
ily available or well understood in all domains, the
intuitive display of Clusion is very useful.
Clusion has several other powerful properties.

For example, it can be integrated with product hier-
archies (meta-data) to provide simultaneous cus-
tomer and product clustering, as well as multi-level
views/summaries. It also has a graphical user inter-
face so one can interactively browse/split/merge a
dataset, which is of great help to speed up the itera-
tions of analysis during a data-mining project.

5. Experiments
5.1. Retail Market-Basket Clusters
First, we will show clusters in a real retail transac-
tion database of 21672 customers of a drugstore (pro-
vided by Knowledge Discovery 1). For the illustra-
tive purpose of this paper, we randomly selected 2500
customers. The total number of transactions (cash-
register scans) for these customers is 33814 over a time
interval of three months. We rolled up the product
hierarchy once to obtain 1236 different products pur-
chased. 15% of the total revenue is contributed by the
single item Financial-Depts (on-site financial services
such as check cashing and bill payment), which was
removed because it was too common. 473 of these
products accounted for less than $25 each in total and
were dropped. The remaining n= 2466 customers (34
customers had empty baskets after removing the irrel-
evant products) with their d = 762 features were clus-
tered using Opossum. The extended price was used
as the feature entries to represent purchased quantity
weighted according to price.
In this customer-clustering case study we set k =

20. In this application domain, the number of clus-
ters is often predetermined by marketing consider-
ations such as advertising industry standards, mar-
keting budgets, marketers ability to handle multiple
groups, and the cost of personalization. In general, a
reasonable value of k can be obtained using heuristics
(Section 3.3).
Opossum’s results for this example were obtained

with a 1.7 GHz Pentium 4 PC with 512 MB RAM in
approximately 35 seconds (∼30s file I/O, 2.5s similar-
ity computation, 0.5s conversion to integer weighted
graph, 0.5s graph partitioning). Figure 4 shows the
extended Jaccard similarity matrix (83% sparse) using
Clusion in six scenarious: (a) original (randomly)
ordered matrix, (b) seriated using Euclidean k-means,
(c) using SOM, (d) using standard Jaccard k-means,
(e) using extended Jaccard sample balanced Opos-
sum, and (f) using value balanced Opossum cluster-
ing. Customer and revenue ranges are given below
each image. In (a), (b), (c), and (d) clusters are nei-
ther compact nor balanced. In (e) and (f) clusters are
much more compact, even though there is the addi-
tional constraint that they be balanced, based on an
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Figure 4 Visualizing Partitioning Drugstore Customers into 20 Clus-
ters. Relationship Visualizations Using Clusion: (a) Orig-
inal (Randomly) Ordered Similarity Matrix, (b) Partially
Reordered Using Euclidean k-means, (c) Using SOM,
(d) Using Standard Jaccard k-means, (e) Using Extended
Jaccard Sample Balanced Opossum, (f) Using Value Bal-
anced Opossum Clustering. Customer and Revenue Ranges
Are Given Below Each Image

equal number of customers and equal revenue met-
rics, respectively. Below each Clusion visualization,
the ranges of numbers of customers and revenue
totals in $ among the 20 clusters are given to indicate
balancedness. We also experimented with minimum-
distance agglomerative clustering but this resulted in
19 singletons and one cluster with 2447 customers, so
we did not bother including this approach. Clearly,

k-means in the original feature space, the standard
clustering algorithm, does not perform well at all
(Figure 4(b)). The SOM after 100000 epochs performs
slightly better (Figure 4(c)) but is outperformed by
the standard Jaccard k-means (Figure 4(d)) which is
adopted to similarity space by using

√− log�s�J�� as
distances (Strehl et al. 2000). As the relationship-based
Clusion shows, Opossum (Figure 4(e), (f)) gives more
compact (better separation of on- and off-diagonal
regions) and well balanced clusters as compared to
all other techniques. For example, looking at standard
Jaccard k-means, the clusters contain between 48 and
597 customers contributing between $608 and $70443
to revenue in a representative solution. (The solution
for k-means depends on the initial choices for the
means.) Thus the clusters may not be of comparable
importance from a marketing standpoint. Moreover
clusters are hardly compact: Darkness is only slightly
stronger in the on-diagonal regions in Figure 4(d).
All visualizations have been histogram-equalized for
printing purposes. However, they are still much bet-
ter observed by browsing interactively on a computer
screen.
A very compact and useful way of profiling a clus-

ter is to look at their most descriptive and their most
discriminative features. For market-basket data, this
can be done by looking at a cluster’s highest revenue
products and the most unusual revenue drivers (e.g.,
products with highest revenue lift). Revenue lift is the
ratio of the average spending on a product in a par-
ticular cluster to the average spending in the entire
dataset.
In Table 1 the top three descriptive and discrim-

inative products for the customers in the 20 value
balanced clusters are shown (see also Figure 4(f)).
Customers in cluster �2, for example, mostly spent
their money on smoking-cessation gum ($10.15 on
average). Interestingly, while this is a 35-fold average
spending on smoking cessation gum, these customers
also spend 35 times more on blood pressure related
items, peanuts, and snacks. Do these customers lead
an unhealthy lifestyle and are eager to change? Clus-
ter �15, which can be seen to be a highly compact clus-
ter of Christmas shoppers characterized by greeting-
card and candy purchases. Note that Opossum had an
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Table 1 List of Descriptive (top) and Discriminative Products (bottom) Dominant in Each of the 20 Value Balanced Clusters Obtained From the Drug-
store Data (see also Figure 4(f)). For Each Item the Average Amount of $ Spent in This Cluster and the Corresponding Lift is Given. Product
Names are Partially Abbreviated in the Original Data

�� Top product $ Lift Sec. product $ Lift Third product $ Lift

1 bath gift packs 3�44 7�69 hair growth m 0.90 9�73 boutique island 0.81 2�61
2 smoking cessati 10�15 34�73 tp canning item 2.04 18�74 blood pressure 1.69 34�73
3 vitamins other 3�56 12�57 tp coffee maker 1.46 10�90 underpads hea 1.31 16�52
4 games items 180 3�10 7�32 facial moisturi 1.80 6�04 tp wine jug ite 1.25 8�01
5 batt alkaline i 4�37 7�27 appliances item 3.65 11�99 appliances appl 2.00 9�12
6 christmas light 8�11 12�22 appliances hair 1.61 7�23 tp toaster/oven 0.67 4�03
7 christmas food 3�42 7�35 christmas cards 1.99 6�19 cold bronchial 1.91 12�02
8 girl toys/dolls 4�13 12�51 boy toys items 3.42 8�20 everyday girls 1.85 6�46
9 christmas giftw 12�51 12�99 christmas home 1.24 3�92 christmas food 0.97 2�07

10 christmas giftw 19�94 20�71 christmas light 5.63 8�49 pers cd player 4.28 70�46
11 tp laundry soap 1�20 5�17 facial cleanser 1.11 4�15 hand&body thera 0.76 5�55
12 film cameras it 1�64 5�20 planners/calend 0.94 5�02 antacid h2 bloc 0.69 3�85
13 tools/accessori 4�46 11�17 binders items 2 3.59 10�16 drawing supplie 1.96 7�71
14 american greeti 4�42 5�34 paperback items 2.69 11�04 fragrances op 2.66 12�27
15 american greeti 5�56 6�72 christmas cards 0.45 2�12 basket candy it 0.44 1�45
16 tp seasonal boo 10�78 15�49 american greeti 0.98 1�18 valentine box c 0.71 4�08
17 vitamins e item 1�76 6�79 group stationer 1.01 11�55 tp seasonal boo 0.99 1�42
18 halloween bag c 2�11 6�06 basket candy it 1.23 4�07 cold cold items 1.17 4�24
19 hair clr perman 12�00 16�76 american greeti 1.11 1�34 revlon cls face 0.83 3�07
20 revlon cls face 7�05 26�06 hair clr perman 4.14 5�77 headache ibupro 2.37 12�65

�� Top product $ Lift Sec. product $ Lift Third product $ Lift

1 action items 30 0�26 15�13 tp video comedy 0.19 15�13 family items 30 0.14 11�41
2 smoking cessati 10�15 34�73 blood pressure 1.69 34�73 snacks/pnts nut 0.44 34�73
3 underpads hea 1�31 16�52 miscellaneous k 0.53 15�59 tp irons items 0.47 14�28
4 acrylics/gels/w 0�19 11�22 tp exercise ite 0.15 11�20 dental applianc 0.81 9�50
5 appliances item 3�65 11�99 housewares peg 0.13 9�92 tp tarps items 0.22 9�58
6 multiples packs 0�17 13�87 christmas light 8.11 12�22 tv’s items 6 0.44 8�32
7 sleep aids item 0�31 14�61 kava kava items 0.51 14�21 tp beer super p 0.14 12�44
8 batt rechargeab 0�34 21�82 tp razors items 0.28 21�82 tp metal cookwa 0.39 12�77
9 tp furniture it 0�45 22�42 tp art&craft al 0.19 13�77 tp family plan 0.15 13�76

10 pers cd player 4�28 70�46 tp plumbing ite 1.71 56�24 umbrellas adult 0.89 48�92
11 cat litter scoo 0�10 8�70 child acetamino 0.12 7�25 pro treatment i 0.07 6�78
12 heaters items 8 0�16 12�91 laverdiere ca 0.14 10�49 ginseng items 4 0.20 6�10
13 mop/broom lint 0�17 13�73 halloween cards 0.30 12�39 tools/accessori 4.46 11�17
14 dental repair k 0�80 38�17 tp lawn seed it 0.44 35�88 tp telephones/a 2.20 31�73
15 gift boxes item 0�10 8�18 hearing aid bat 0.08 7�25 american greeti 5.56 6�72
16 economy diapers 0�21 17�50 tp seasonal boo 10.78 15�49 girls socks ite 0.16 12�20
17 tp wine 1.5l va 0�17 15�91 group stationer 1.01 11�55 stereos items 2 0.13 10�61
18 tp med oint liq 0�10 8�22 tp dinnerware i 0.32 7�70 tp bath towels 0.12 7�28
19 hair clr perman 12�00 16�76 covergirl imple 0.14 11�83 tp power tools 0.25 10�89
20 revlon cls face 7�05 26�06 telephones cord 0.56 25�92 ardell lashes i 0.59 21�87

extra constraint that clusters should be of comparable
value. This may force a larger natural cluster to split,
as may be the case causing the similar clusters �9 and
�10. Both are Christmas-gift shoppers (Table 1(top)),

cluster �9 are the moderate spenders and cluster �10

are the big spenders, as cluster �10 is much smaller
with equal revenue contribution (Figure 4(f)). Our
hunch is reinforced by looking at Figure 4(f).
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5.2. Web-Document Clusters
In this Section, we present results on documents from
the Yahoo! news section. Each of the 2340 documents
is characterized by a bag of words. The data are
publicly available from ftp://ftp.cs.umn.edu/dept/
users/boley/PDDPdata/ (K1 series) and was used in
Boley et al. (1999) and Strehl et al. (2000). The 20
original Yahoo! news categories are Business (B),
Entertainment (no sub-category (E), art (a), cable
(c), culture (cu), film (f), industry (i), media (m),
multimedia (mm), music (mu), online (o), people
(p), review (r), stage (s), television (t), variety
(v)), Health (H), Politics (P), Sports (S), Technology
(T), and correspond to the category labels 1� 
 
 
 �20,
respectively. The raw 21839×2340 word-by-document
matrix consists of the non-normalized occurrence fre-
quencies of stemmed words, using Porter’s suffix
stripping algorithm (Frakes 1992). Pruning all words
that occur less than 0
01 or more than 0
10 times on
average because they are insignificant (e.g., haruspex)
or too generic (e.g., new), respectively, results in d =
2903.
Let us point out some worthwhile differences

between clustering market-baskets and documents.
Firstly, discrimination of vector length is no longer
desired since customer life-time value matters but
document length does not. Consequently, we use
cosine similarity s�C� instead of extended Jaccard sim-
ilarity s�J�. Also, in document clustering we are less
concerned about balancing, since there are usually
no direct monetary costs of the actions derived from
the clustering involved. As a consequence of this, we
over-cluster first with sample-balanced Opossum and
then allow user-guided merging of clusters through
Clusion. The Yahoo! news dataset is notorious for
having some diffuse groups with overlaps among cat-
egories, a few categories with multi-modal distribu-
tions, etc. These aspects can be easily explored by
looking at the class labels within each cluster, merging
some clusters and then again visualizing the results.
Figure 5 shows clusterings with three settings of k.

For k = 10 (Figure 5(a)) most clusters are not dense
enough, despite the fact that the first two clusters
already seem like they should not have been split.
After increasing k to 40 (Figure 5(b)), Clusion indi-
cates that the clustering now has sufficiently com-
pact clusters. Now, we successively merge pairs of

Figure 5 Comparison of Various Number of Clusters k for Yahoo! News
Data: (a) Under-Clustering at k = 10, (b) Over-Clustering at
k = 40, (c) Good Clustering Through Interactive Split and
Merge Using Clusion at k = 20

highly related clusters until we obtain our final clus-
tering with k = 20 (Figure 5(c)). The merging process
is guided by inter-cluster similarity (e.g., bright off-
diagonal regions) augmented by cluster-descriptions
(e.g., related frequent words). In fact, in our graph-
ical user interface of Clusion merging is as easy as
clicking on a selected off-diagonal region.
Table 2(top) shows cluster evaluations, and their

descriptive and discriminative word stems. Each clus-
ter (��) is evaluated using the dominant category
(�ĥ), purity ("

�P�), and entropy ("�E�). Let n�h�� denote
the number of objects in cluster �� that are classified
to be in category h as given by the original Yahoo!
categorization. Cluster ��’s purity can be defined as

"�P�����=
1
n�
max
h

(
n�h��

)

 (9)

Purity can be interpreted as the classification rate
under the assumption that all samples of a cluster
are predicted to be members of the actual domi-
nant class for that cluster. Alternatively, we also use
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Table 2 Cluster Evaluations, Their Descriptive and Discriminative Terms (top) as Well as the Confusion Matrix (bottom) for the Yahoo! News Example
(see also Figure 5(c)). For Each Cluster Number �� the Dominant Category �ĥ, Purity �

�P�, and Entropy ��E� Are Shown

�� �ĥ ��P� ��E� top 3 descriptive terms Top 3 discriminative terms

1 P 21�05 0�73 israel, teeth, dental mckinnei, prostat, weizman
2 H 91�48 0�15 breast, smok, surgeri symptom, protein, vitamin
3 S 68�39 0�40 smith, player, coach hingi, touchdown, rodman
4 P 52�84 0�60 republ, committe, reform icke, veto, teamster
5 T 63�79 0�39 java, sun, card nader, wireless, lucent
6 o 57�63 0�40 apple, intel, electron pentium, ibm, compaq
7 B 60�23 0�48 cent, quarter, rose dow, ahmanson, greenspan
8 f 37�93 0�66 hbo, ali, alan phillip, lange, wendi
9 cu 50�85 0�48 bestsell, weekli, hardcov hardcov, chicken, bestsell

10 p 36�21 0�56 albert, nomin, winner forcibl, meredith, sportscast
11 f 67�80 0�33 miramax, chri, novel cusack, cameron, man
12 f 77�59 0�31 cast, shoot, indie juliett, showtim, cast
13 r 47�28 0�56 showbiz, sound, band dialogu, prodigi, submiss
14 mu 44�07 0�56 concert, artist, miami bing, calla, goethe
15 p 50�00 0�50 notabl, venic, classic stamp, skelton, espn
16 mu 18�97 0�71 fashion, sold, bbc poetri, versac, worn
17 p 55�08 0�54 funer, crash, royal spencer, funer, manslaught
18 t 82�76 0�24 househ, sitcom, timeslot timeslot, slot, household
19 f 38�79 0�58 king, japanes, movi denot, winfrei, atop
20 f 69�49 0�36 weekend, ticket, gross weekend, gross, mimic

B E a c cu f i m mm mu o p r s t v H P S T

7 106 1 — 4 2 — 30 6 — 4 2 1 — — 5 2 — 2 — 11
9 — — — 3 30 17 — — 1 1 2 2 1 — 1 1 — — — —
8 — — 1 7 — 22 2 — — 3 1 5 8 1 5 2 — — 1 —

11 — — — 1 — 40 1 — — — — 1 2 — 1 13 — — — —
12 — — — 2 — 45 — — — — — 2 1 2 4 2 — — — —
19 — 1 — 3 1 45 1 — — 8 — 15 2 — 25 14 — — 1 —
20 — 1 1 — — 41 — — — 4 — — — 5 6 1 — — — —
14 — 2 8 — 4 2 — — — 26 1 12 — 2 1 — — 1 — —
16 — 1 4 1 9 9 2 2 1 11 — 11 — — 6 — — 1 — —
6 8 — — — — — 1 — 3 — 34 — — — — 1 — — — 12

10 — — — 3 1 4 — — 2 2 1 21 2 — 20 2 — — — —
15 — — 2 1 5 13 — — — 4 2 29 — — 2 — — — — —
17 — 1 — 2 6 5 1 6 — 12 1 65 3 — 12 4 — — — —
13 — — 1 1 9 22 6 1 3 33 9 58 139 7 2 3 — — — —
18 — — 1 2 — 1 — — — — — 2 — — 48 4 — — — —
2 2 — — 2 1 1 1 — 1 1 3 5 — — 6 — 483 5 17 —
1 3 2 2 1 — 4 — 1 — 4 — 10 — — 5 — 11 12 2 —
4 14 — 4 7 5 2 15 5 — 6 3 6 — 1 12 2 — 93 1 —
3 1 — — 1 1 5 10 — 3 5 — 3 — — 23 3 — — 119 —
5 8 — — 3 — — — — — 1 6 — — — 3 — — — — 37

�0�1� entropy, which is defined for a problem with g
categories as

"�E�����=−
g∑
h=1

n�h��
n�
logg

(
n�h��
n�

)

 (10)

Entropy is a more comprehensive measure than
purity since rather than just considering the num-
ber of objects “in” and “not in” the most frequent
category, it considers the entire distribution. Table
2(bottom) gives the complete confusion matrix, which
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indicates how clusters and categories are related. Note
that neither category nor prior distribution informa-
tion is used during the unsupervised clustering pro-
cess. In fact, the clustering is very good. It is much
better than the original categorization in terms of
edge cut and similarity lift, and it provides a much
better grouping when only word frequencies are con-
sidered. The evaluation metrics serve the purpose
of validating our results and capture relevant cate-
gorizations. However, their importance for our pur-
pose is limited since we are solving a clustering prob-
lem and not a classification problem. The largest and
best cluster is cluster �2 with 483 out of 528 docu-
ments, being from the health cluster. Health-related
documents show a very distinct set of words and
can, hence, be nicely separated. Small and not-well-
distinguished categories have been put together with
other documents (for example, the arts category has
mostly been absorbed by the music category to form
clusters 14 and 16). This is inevitable since the 20 cat-
egories vary widely in size from 9 to 494 documents
while the clusters Opossum provides are much more
balanced (from 58 to 528 documents per cluster).

5.3. Web-Log Session Clusters
Web portals and other e-commerce sites often seg-
ment their visitors to provide better personalized ser-
vices. When a web page is requested, the server
log records the user’s IP address, the URL retrieved,
access time, etc. These logs can be analyzed to seg-
ment visitors based on their “cow path” or trajectory
through the website, as described by the sequence of
pages visited, page contents, time spent on each page,
etc.
In a recent work, the use of a weighted longest com-

mon subsequence (LCS) was suggested (Banerjee and
Ghosh 2001) to describe how similar two trajectories
are. This metric determines the LCS of the two tra-
jectories, and then scales it by what fraction of the
total visit time is spent in the longest common sub-
sequence. Alternatively, one can use a vector-space
model, where entries in the data matrix X indicate
time spent in a particular session (column) on a par-
ticular page (row).
In this Section, we present results of Opossum

and Clusion for the data presented in Banerjee

and Ghosh (2001). We randomly selected 3000 ses-
sions (out of 23310) from a community portal,
http://www.sulekha.com/. The index/root page of the
web portal was removed since it was visited by
almost everyone for a considerable amount of time
and, hence, provided no discriminatory information.
Figure 6 compares results for a vector-space-based
approach using cosine similarity with LCS. The cosine
measure shows some large dark diagonal regions
indicating compact clusters of sessions, but it turns
out that these clusters are sessions where the major-
ity of the time was spent on a category-index page
(level 2 on the portal’s site map). The LCS is able
to capture a larger percentage of the total similarity
(amount of “grayness”) in the diagonal regions, show-
ing a better and more balanced grouping. The cosine
similarity is far less sparse and is dominated by major
category index pages, while the LCS shows better iso-
lation among the clusters. Such visualization can be
used to select the appropriate similarity measure for
a given clustering objective, and to evaluate the over-
all clustering quality. For example, Clusion shows
that clustering visitors into 20 groups was successful
despite the extreme sparsity (∼ 1%) in Figure 6(b). We
also used value-balanced Opossum to cluster web-log
sessions, which yields clusters with comparable total
web-surfer exposure time. These clusters might be par-
ticularly useful for new formats in target advertising
campaigns. It simplifies advertising-campaign man-
agement by enabling the portal to offer fixed prizes
for ad-delivery exposure to each cluster since they
represent comparable attention times.

6. System Issues
6.1. Synergy Between OPOSSUM and CLUSION
The visualization and clustering techniques presented
in this work need to be considered together, not in iso-
lation. This is because Clusion is particularly suited
to viewing the output of Opossum. First, the simi-
larity matrix is already computed during the cluster-
ing step, so no extra computation is needed, except
for permuting this matrix, which can be done in lin-
ear time (O�n�) since the size and seriation order of
each partition is known. Second, since Metis involves
boundary Kernighan-Lin refinement, clusters that are
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similar appear closer in the seriation order. Thus it is
no coincidence that clusters �1 and �2 appear con-
tiguous in Figure 5(a). Finally, one can experiment
with different similarity measures for Opossum and
quickly get visual feedback regarding their effective-
ness using Clusion (Figure 6).

6.2. Scalability
The computational bottleneck in the overall pro-
cess lies in calculating the similarity matrix, which
involves O�n2d� operations, since similarity needs
to be computed between each pair of data points,
and involves all the dimensions. By exploiting spar-
sity, computation of a single similarity value can be
reduced from O�d� to O(number of non-zeros in d).
However, once this matrix is computed, any subse-
quent clustering routine does not depend on d at
all! Metis is very fast, almost linear in the num-
ber of vertices for reasonably sparse graphs, as has
been shown over numerous experiments (Karypis and
Kumar 1998). Finally, the reordering of the similar-
ity matrix for visualization is O�n�. Thus the overall
method is linear in d.
The quadratic complexity w.r.t. the number of

objects, n, is problematic for large datasets. Note
that any clustering algorithm that compares an object
with all others (e.g., agglomerative, all relationship-
based methods) has a complexity at least O�n2�, as
does Opossum. There are four main ways of reducing
this computation. We mention them briefly and then
explore the first option in a bit more detail.
1. Sampling: Sample the data, cluster the sample

points, and then use a quick heuristic to allocate

Figure 6 Web-Log Session Clustering Using a Vector-Space Model
and Cosine Similarity (a), and Using LCS Similarity (b)

the non-sampled points to the initial clusters. This
approach will yield a faster algorithm at the cost
of some possible loss in quality, and is employed,
for example in the buckshot algorithm for the scat-
ter/gather approach to iterative clustering for inter-
active browsing (Cutting et al. 1992). If the sample is
O�

√
n�, and “nearest cluster center” is used to allocate

the remaining points, one obtains an O�kn� algorithm.
Also related are randomized approaches that can par-
tition a set of points into two clusters of comparable
size in sublinear time, producing a 1+) solution with
high probability (Indyk 1999). We will show later that
since Opossum is based on balanced clusters, sam-
pling is a good choice since one can ensure with high
probability that each cluster is represented in the sam-
ple without needing a large sample size.
2. Sequential building: Construct a “core” cluster-

ing using a small number of elements, and then
sequentially scan the data to allocate the remaining
inputs, creating new clusters (and optionally adjust-
ing existing centers) as needed. Such an approach is
seen e.g. in BIRCH (Zhang et al. 1997). This style com-
promises balancing to some extent, and the thresh-
old determining when a new cluster is formed has
to be experimented with to bring the number of
clusters obtained to the desired range. A version
of this approach for graph partitioning using a cor-
rupted clique model was proposed by (Ben-Dor et al.
1999) and applied to clustering gene expressions. This
can be readily used for Opossum as well. Sequential
building is specially popular for out-of-core methods,
the idea being to scan the database once to form a
summarized model (for instance, the size, sum and
sum-squared values of each cluster, Bradley et al.
1998) in main memory. Subsequent refinement based
on summarized information is then restricted to main-
memory operations without resorting to further disk
scans.
3. Representatives: Compare with representatives

rather than with all points. Using m < n representa-
tives reduces the number of similarities to be consid-
ered from O�n2� to O�nm�. For example, in k-means,
the current cluster means are used as representatives.
Since points do not have to compared to all others
but only to a few centroids (the current means), scala-
bility is considerably improved. The results, however,
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become sensitive to the initial selection of representa-
tives. Also, representatives might have to be updated
resulting in an iterative algorithm.
4. Pre-segmentation: Apply prior domain knowl-

edge to pre-segment the data, e.g. using indices
or other “partitionings” of the input space. Pre-
segmentations can be coarser (e.g., to reduce pairwise
comparisons by only comparing within segments) or
finer (e.g., to summarize points as a pre-processing
step as in BIRCH) than the final clustering. As men-
tioned earlier, this becomes increasingly problematic
as the dimensionality of the input space increases
to the hundreds or beyond, where suitable seg-
ments may be difficult to estimate, pre-determine, or
populate.
All these approaches are somewhat orthogonal to the
main clustering routine in that they can be applied
in conjunction with most core clustering routines
(including Opossum) to save computation, at the cost
of some loss in quality.

6.3. FASTOPOSSUM
Since Opossum aims to achieve balanced clusters,
random sampling is effective for obtaining adequate
examples of each cluster. If the clusters are perfectly
balanced, the distribution of the number of samples
from a specific cluster in a subsample of size n taken
from the entire population is binomial with mean n/k
and variance n�k− 1�/k2. For a finite population, the
variance will be even less. Thus, if we require at least
r representatives from this cluster, then the number
of samples is given by n/k ≥ z-

√
n�k−1�+ r , where

z-= 1
96 or 2.81 for 97.5% and 99.5% confidence levels
respectively. This is O�rk�. For example, if we have 10
clusters and need to ensure at least 20 representatives
from a given cluster with probability 0.995, about 400
samples are adequate. Note that this number is inde-
pendent of n if n is adequately large (at least 400 in
this case), so even for over one million customers,
only 400 representatives are required.
This suggests a simple and effective way to scale

Opossum to a very large number of objects n, using the
following four-step process called FastOpossum:
1. Pick a boot-sample of size n so that the corre-

sponding r value is adequate to define each cluster.

2. Apply Opossum to the boot-sample to get k ini-
tial clusters.
3. Find the centroid for each of the k clusters.
4. Assign each of the remaining n−n points to the

cluster with the nearest centroid.
Using n = √

n reduces the complexity of FastOpos-
sum to O�kn�. Note that the above algorithm may not
result in balanced clusters. We can enforce balancing
by allocating the remaining points to the k clusters in
groups, each time solving a stable-marriage problem
(Gusfield and Irving 1989), but this will increase the
computation time.
Figure 7 illustrates the behavior of FastOpossum

for the drugstore customer dataset from Section 5.1.
Using all 2466 customers as the boot-sample (i.e., no
sub-sampling) results in balancing within the 1.05
imbalance requirement and approximately 40% of
edge weight remaining (as compared to 5% baseline
for random clustering). As the boot sample becomes
smaller the remaining edge weight stays approxi-
mately the same (Figure 7(a)), however the imbalance
increases (Figure 7(b)). The remaining edge-weight
fraction indicates how much of the cumulative edge
weight remains after the edge separator has been
removed:( k∑

�=1

∑
a=�

∑
b=�� b>a

s�xa�xb�
)/( n∑

a=1

n∑
b=a+1

s�xa�xb�
)



The better the partitioning, the smaller the edge sep-
arator, and thus the larger the remaining edge-weight
fraction. Surprisingly the speedup does not result in
a significantly decreased quality in terms of remain-
ing edge weight (Figure 7(a)). However, the balanc-
ing property is progressively relaxed as the boot sam-
ple becomes smaller in comparison to the full dataset
(Figure 7(b)). Using n= 100 initial points reduces the
original computation time to less than 1% at compara-
ble remaining edge weight but at an imbalance of 3.5
in the worst of 10 random trials. These results indi-
cate that scaling to large n is easily possible, if one is
willing to relax the balancedness constraints.

6.4. Parallel Implementation
Another notion of scalability is w.r.t. the number of
processors (speedup, iso-efficiency, etc.). Our analysis
(Strehl and Ghosh 2000) shows almost linear speedup
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Figure 7 Effect of Sub-Sampling on Opossum. Cluster Quality As Measured by Remaining Edge-Weight Fraction (a) and Imbalance (b) of Total Graph
With 2466 Vertices (customers from Section 5.1) for Various Boot Sample Sizes n in FastOpossum. For Each Setting of n the Results’ Range
and Mean of 10 Trials Are Depicted

for our method, as the similarity computation as well
as graph partitioning can both be fairly trivially par-
allelized with little overhead. Parallel implementation
of the all-pair similarity computation on SIMD or dis-
tributed memory processors is trivial. It can be done
in a systolic or block systolic manner with essentially
no overhead. Frameworks such as MPI also provide
native primitives for such computations. Paralleliza-
tion of Metis is also very efficient, and (Schloegel et al.
1999) reports partitioning of graphs with over 7 mil-
lion vertices in 7 seconds into 128 clusters on a 128
processor Cray T3E. For further details, see Strehl and
Ghosh (2000).

7. Related Work
7.1. Clustering and Indexing
Clustering has been widely studied in several disci-
plines, specially since the late 1960s (Jain and Dubes
1988, Hartigan 1975). Classic approaches include par-
titional methods such as k-means and k-medioids,
bottom-up hierarchical approaches such as single link
or complete link agglomerative clustering (Murtagh
1983), soft-partitioning approaches such as fuzzy
clustering, EM-based techniques and methods moti-
vated by statistical mechanics (Chakaravathy and
Ghosh 1996). While several methods of clustering

data defined by pairwise (dis)similarities are avail-
able (Kaufmann and Rousseeuw 1990), most classi-
cal techniques, as well as recent techniques proposed
in the data-mining community (CLARANS, DBScan,
BIRCH, CLIQUE, CURE, WaveCluster etc, Rastogi
and Shim 1999), are based on distances between the
samples in the original feature space. The emphasis of
the data-mining-oriented proposals mentioned above
is primarily on an efficient and scalable (w.r.t. number
of records) implementation of approximate k-means,
k-medioids, or local density estimation. Thus they are
all faced with the “curse of dimensionality” (Fried-
man 1994) and the associated sparsity issues, when
dealing with very high-dimensional data. Essentially
the amount of data to sustain a given spatial den-
sity increases exponentially with the dimensional-
ity of the input space, or alternatively, the sparsity
increases exponentially given a constant amount of
data, with points tending to become equidistant from
one another. In general, this will adversely affect
any method based on spatial density, unless the data
follow certain simple distributions as described in
the introduction. Certain other limitations of popular
clustering methods are nicely illustrated in (Karypis
et al. 1999). In Aggarwal (2001), the authors recognize
that one way of tackling high-dimensional data is to
change the distance function in an application-specific
way. They suggest some possible modified functions
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and principles but do not provide any experimental
results.
In databases, where clustering is often tied to

the need for efficient indexing, a variety of space-
partitioning methods (e.g. R-trees and variants) and
data-partitioning (such as KDB-trees), exist. These
methods are typically tractable for up to 10 to 15-
dimensional data, and by a judicious hybrid of these
two approaches, data with tens of attributes may be
partitioned (Chakrabarti and Mehrotra 1999). Signif-
icant overlaps among the hyper-rectangles and the
occurrences of several empty areas become increas-
ingly problematic in the dimensionality is further
increased (see Chakrabarti and Mehrotra 1999 for
more details).
Graph-theoretic clustering has been known for a

while (Jain and Dubes 1988) though not commonly
applied. But lately, such an approach has proved
attractive for gene-expression analysis (Ben-Bor et al.
1999).
Graphical methods also have emerged in the data-

mining literature to tackle high-dimensional data
analysis. ROCK (Robust Clustering using linKs, Guha
et al. 1999) is an agglomerative hierarchical clustering
technique for categorical attributes. It uses the binary
Jaccard coefficient and a thresholding criterion to
establish links between samples. Common neighbors
are used to define inter-connectivity of clusters that
is used to merge clusters. CHAMELEON (Karypis
et al. 1999) starts with partitioning the data into a
large number of clusters by partitioning the v-nearest
neighbor graph. In the subsequent stage clusters are
merged based on relative inter-connectivity and rel-
ative closeness measures. These localized measures
lead to a dynamic adaption capability with spectacu-
lar results for two-dimensional data. But its effective-
ness and interpretability for higher-dimensional data
is not reported. In Han et al. (1998), a hypergraph-
clustering approach was taken for clustering highly
related items defined in high-dimensional space, and
generates the corresponding association rules. This
method was applied to binarized data, with each
frequent item-set being represented by a weighted
hyperedge. Like our method, it is suitable for high-
dimensional data and is linear in d. Subsequently,
this and another graph-partitioning algorithm called

principal direction divisive partitioning was applied
for web-document categorization (Boley et al. 1999).
These two algorithms are the closest in spirit to our
approach.
Finally, spectral partitioning methods (Pothen et al.

1990, Miller et al. 1997) can be applied to similarity
graphs. A probabilistic foundation for spectral meth-
ods for clustering and segmentation has been recently
proposed (Meila and Shi 2001).
Related work on scalability issues of clustering are

discussed in Section 6.2.

7.2. Visualization
Visualization of high-dimensional data clusters can be
largely divided into three popular approaches:
1. Dimensionality reduction by selection of two

or three dimensions, or, more generally, projecting
the data down to two or three dimensions. Often
these dimensions correspond to principal components
or a scalable approximation thereof (e.g., FASTMAP,
Faloutsos and Lin 1995). Chen (1999), for example,
creates a browsable 2-dimensional space of authors
through co-citations. Another noteworthy method
is CViz (Dhillon et al. 1998), which projects onto
the plane that passes through three selected cluster
centroids to yield a “discrimination optimal” two-
dimensional projection. These projections are useful
for a medium number of dimensions, i.e., if d is not
too large (<100). For text mining, linearly project-
ing down to about 20–50 dimensions does not affect
results much (e.g. latent semantic indexing). How-
ever, it is still too high to visualize. A projection
to lower dimensions leads to substantial degradation
and three-dimensional projections are of very limited
utility. Nonlinear projections have also been studied
(Chang and Ghosh 2001). Recreating a two- or three-
dimensional space from a similarity graph can also
be done through multi-dimensional scaling (Torger-
son 1952).
2. Parallel-axis plots show each object as a line

along d parallel axes. However, this technique is ren-
dered ineffective if the number of dimensions d or the
number of objects gets too high.
3. Kohonen’s (1990) Self Organizing Map (SOM)

provides an innovative and powerful way of cluster-
ing while enforcing constraints on a logical topology
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imposed on the cluster centers. If this topology is two-
dimensional, one can readily “visualize” the cluster-
ing of data. Essentially a two-dimensional manifold is
mapped onto the (typically higher dimensional) fea-
ture space, trying to approximate data density while
maintaining topological constraints. Since the map-
ping is not bijective, the quality can degrade very
rapidly with increasing the dimensionality of the fea-
ture space, unless the data are largely confined to a
much lower order manifold within this space (Chang
and Ghosh 2001). Multi-dimensional scaling (MDS)
and associated methods also face similar issues.
Our visualization technique involves a smart

reordering of the similarity matrix. Ordering of data
points for visualization has previously been used in
conjunction with clustering in different contexts. For
example, in OPTICS (Ankerst et al. 1999), instead of
producing an explicit clustering, an augmented order-
ing of the database is produced. Subsequently, this
ordering is used to display various metrics such as
reachability values. In cluster analysis of genome data
(Eisen et al. 1998) re-ordering the primary data matrix
and representing it graphically has been explored.
This visualization takes place in the primary data
space rather than in the relationship-space. Sparse pri-
mary data-matrix reorderings have also been consid-
ered for browsing hypertext (Berry et al. 1996).
A useful survey of visualization methods for data

mining in general can be found in Keim and Kriegel
(1996). The popular book by Tufte (1983) on visualiz-
ing information is also recommended.

8. Concluding Remarks
A recent poll (June 2001) by KDNuggets (http://www.
kdnuggets.com/) indicated that clustering was by far
the most popular type of analysis in the last 12
months at 22% (followed by direct marketing at 14%
and cross-sell models at 12%). The clustering pro-
cess is characterized by extensive explorative periods
where better domain understanding is gained. Often,
in this iterative process the crucially important defini-
tions of features and similarity are refined. The visu-
alization toolkit Clusion allows even non-specialists
to get an intuitive visual impression of the grouping
nature of objects that may be originally defined in

high-dimensional space. Taking Clusion from a post-
processing step into the loop can significantly accel-
erate the process of discovering domain knowledge,
as it provides a powerful visual aid for assessing and
improving clustering. For example, actionable recom-
mendations for splitting or merging of clusters can
be easily derived, and readily applied via a point-
and-click user interface, and different similarity met-
rics can be compared visually. It also guides the user
towards the “right number” of clusters. A demo of
this tool can be found at http://www.strehl.com/.
This work originally stemmed from our encounter

with several retail datasets, where even after substan-
tial pre-processing we were left with records with
over 1000 attributes, and further attempts to reduce
the number of attributes by selection/projection led to
loss of vital information. Relationship-based cluster-
ing provides one way out by transforming the data to
another space (in time linear in the number of dimen-
sions) where the high dimensionality gets “hidden,”
since once similarity is computed, the original dimen-
sions are not encountered again. This suggests a con-
nection of our approach with kernel-based methods,
such as support-vector machines, which are currently
very popular for classification problems (Vapnik 1995,
Joachims 1998). A kernel function of two vectors is a
generalized inner product between the corresponding
mappings of these vectors into a derived (and typi-
cally very high-dimensional) feature space. Thus, one
can view it as a similarity measure between the two
original vectors. It will be worthwhile to investigate
further this connection for a variety of applications
(Jaakkola and Haussler 1999).
The clustering algorithm presented in this paper is

largely geared towards the needs of segmenting trans-
actional data, with provision of getting balanced clus-
ters and for selecting the quantity (revenue, margins)
of interest to influence the grouping. Thus, rather than
evaluating business objectives (such as revenue con-
tribution) after clustering is done, they are directly
integrated into the clustering algorithm. Moreover, it
is a natural fit with the visualization algorithm. Also,
it can be extended to other domains, as illustrated
by our results on document clustering and group-
ing web-logs. We also examined several ways of scal-
ing the clustering routine to a large number of data
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points, and elaborated on one approach that is able
to use sampling effectively because of the balanced
nature of the desired clusters.
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