Copyright
by
Alexander Strehl
1998



A NEW BAYESTAN RELAXATION ALGORITHM
FOR MOTION ESTIMATION AND SEGMENTATION
IN THE PRESENCE OF TWO AFFINE MOTIONS

by

Alexander Strehl, Vordipl.-Inf. Univ.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN
August 1998



A NEW BAYESTAN RELAXATION ALGORITHM
FOR MOTION ESTIMATION AND SEGMENTATION
IN THE PRESENCE OF TWO AFFINE MOTIONS

APPROVED:

Supervisor:

J. K. Aggarwal

W. S. Geisler II1



Dedicated to my parents

for their love, patience and measureless support



A NEW BAYESIAN RELAXATION ALGORITHM FOR
MOTION ESTIMATION AND SEGMENTATION IN THE
PRESENCE OF TWO AFFINE MOTIONS

Publication No.

Alexander Strehl, M.S.E.
The University of Texas at Austin, 1998

Supervisor: J. K. Aggarwal

Describing an image sequence in terms of a small number of coher-
ently moving segments is useful for tasks ranging from autonomous vehicle
navigation to video compression. A new probabilistic relaxation algorithm is
proposed to perform motion estimation as well as object segmentation by us-
ing an iterative Bayesian approach. In the first stage, optical flow with local
confidence estimates is computed. The second stage uses high confidence loca-
tions to alternately estimate parameters of two affine motions and segment the
current image in two motion regions. This procedure is iterated in a stochastic
relaxation framework to minimize the error of the fitted affine models until the
motion parameter estimates converge. Applications of our motion estimation
algorithm to stabilize sequences, detect and track objects and obtain their tra-
jectories are presented. Our algorithm’s performance is illustrated on synthetic

and real image sequences.
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Chapter 1

INTRODUCTION

1.1 Area Overview

Almost every task a human being accomplishes is guided by its visual
system. Light intensity changes sensed with the eyes are analyzed to obtain
critical information about the environment. Computer vision (CV) research
deals with the use of modern computer technology to perform visual perception
tasks. Presently, artificial vision systems perform successfully only in very
constrained and rather simple environments, while humans effortlessly analyze
complex natural scenes in realtime and almost without error. Learning from
the nature’s evolutionary solutions to improve artificial vision systems can be
very rewarding, and links computer vision with neuroscience and psychology
[1] 2] [3] [4].

In this thesis, dynamic scenes are investigated [5] [6] [7] [8] [9] [10].
Changes in a scene can be caused by camera motion, object motion, illumi-
nation changes, changes in object structure, size or shape. There is currently
no system that takes all these effects into account. Most systems specialize in
modeling one or two causes of these. In our case, we will only consider the
effects of camera and object motion. Consequently, an image sequence can be

classified into one of the four following categories:

e Stationary Camera and Stationary Objects (SCSO)



e Stationary Camera and Moving Objects (SCMO)
e Moving Camera and Stationary Objects (MCSO)

e Moving Camera and Moving Objects (MCMO)

The SCSO category is equivalent to static scene analysis and will not
be considered further [11] [12] [7]. In the past, SCMO scenarios have received
the most attention in the area of dynamic scene analysis. The objective of the
analysis is usually to detect moving objects, recognize them and compute their
motion characteristics. While the major part of the image does not change
over time, the region of interest is the part of the image that changes. These
changes are assumed to be due to object motion. Image changes can simply
be detected by thresholding gray-level difference images. Segmentation can be

done by clustering regions with changes [13] [14].

Static scenes observed with a moving camera (MCSO) have recently
gained a lot of attention. In this scenario, estimating scene structure and
obtaining a description of the camera motion are often the tasks to be solved
[15] [16]. In this scenario, the observer moves through a rigid environment.
Heeger and Jepson propose in [17] an algorithm to retrieve observer motion
parameters from optical flow fields in the image plane. The motion of the
observer can be represented by a translational and a rotational component.
The rotational component yields no information about scene structure, and it
is desired to separate this component from the translational component. Once
the translational observer motion is known, this can be used to compute the

scene structure from the flow field [18]. This is made possible by the fact



that feature points move slower with increasing distance from the translating
observer (parallax problem). A comparison of present algorithms to compute
observer motion can be found in [19]. Burger and Bhanu propose a robust
system in [20] to estimate ego-motion' parameters for autonomous land vehicles

by computing a fuzzy focus of expansion (FOE) from tracked features.

The most general (and probably the most difficult) case of dynamic
scene analysis, namely MCMO, has been virtually ignored for a long time.
Recently many systems have been proposed [21] [22] [23] [24] [25] [26]. No
promising unified approach has yet been found. Compared to SCMO sequences,
objects cannot be detected by simple difference images, because every image
location is moving due to the camera motion. On the other hand, MCSO
approaches fail because multiple rigid motions are present in MCMO scenes
and the motion boundaries are unknown. Our proposed algorithm falls into
this category and presents a solution for a subset of those sequences with two

affine motions.

Once obtained, the extracted motion information is a very powerful
cue to solve various tasks in diverse areas like robotics or multimedia. Appli-

cations include:

e 3-D scene structure estimation
e Active vision systems

e Autonomous vehicle navigation

!Camera motion is also called ego-motion, self-motion or observer motion throughout this
thesis.



Object detection, tracking and recognition

Surveillance

Efficient video encoding

Video enhancement, stabilization

This list names only a few examples and currently the number of applications

of versatile motion information seems to increase rapidly.

1.2 Problem Description

This thesis presents a new approach to the motion estimation problem
in the moving camera and moving object case (MCMO). We assume that one
independently moving object (IMO) is observed by a moving (or stationary,
as a special case of moving) camera providing monocular gray-level images.
The environment is not further constrained and no additional information on

camera parameters, camera motion or scene structure is available.

The desired result is a compact description of the camera and object
motion obtained only by analyzing a gray-level image sequence. We model
these two motions, each as an affine transform of its coordinates. This is called
the affine motion model and has six parameters per motion. So in our case the
compact description is presented in the form of six parameters for the camera
and six parameters for the object motion. Knowledge about the IMO’s starting
position in conjunction with the computed motion characteristics enables us to

track it over an image sequence. Other applications of the obtained motion in-



formation that are presented in this thesis are simultaneous image stabilization

[27] [28] and mosaicing [29] [30].

1.3 Previous Approaches

Recently many advances have been made in multiple motion scenar-
ios. Active contour trackers can be used to track an object over time with a
moving camera [31] [32]. However this approach requires objects with a distinct
contour. In general a parametric function, capable of modeling this contour,
must be known in advance. Other drawbacks of this approach include its failure
in cases involving occluded or fragmented motion and the necessity to initialize
the contour. Irani presents in [33] a method for detecting and tracking multiple
transparent motions. Black and Anandan propose a robust estimation frame-
work for multiple motions in [21] and apply it to several standard techniques for
recovering optical flow. Adiv in [34] groups segments of the optical flow based
on rigid 3-D motion constraints. Wang and Adelson [35] use optical flow to
segment multiple motions through a k-means parameter clustering technique.
Various advances have been made by Davis using systems employing velocity

tuned filters [36].

1.4 Contribution of This Thesis

In this thesis a new probabilistic framework to estimate affine motion
parameters from monocular gray-level images is introduced. The proposed

algorithm performs the following two steps:



1. Obtain velocity vectors? and confidence estimates for each pixel using
template-matching. We use the maximum likelihood estimate of all pos-
sible displacements as the velocity vector and the variability of the like-
lihood over the template searchwindow as a reciprocal confidence value.

(Chapter 2)

2. Tteratively cluster high confidence pixels based on their affine motion
parameters. This is done by relaxing the probabilities that a velocity
vector is generated by a certain motion class. Deciding which motion
caused the image velocity at a certain pixel is done with a Bayes classifier

[37] . (Chapter 3)

This approach assumes very little knowledge about the presented
scene. We do not require moving objects to be compact, so fragmented motion
poses no problem. The object’s shape does not have to be known in advance,

unlike in a contour tracking framework [31] [32].

However, we do assume that the present motion can be approximated
satisfactorily with an affine model and that two motion classes are present in the
scene (e.g., background motion® and object motion). This is a very reasonable
assumption in our scenarios, for example an independently moving object (first
motion class) viewed by a camera on a moving platform (background is second

motion class).

20ptical flow, displacement field and velocity vectors are used synonymous in this thesis
and denote the 2-D vector field representing the estimated pixel-wise motion direction and
magnitude between two successive frames.

3Background motion is caused by the moving camera. Background motion equals camera
motion with inverse orientation.



The advantages of the presented algorithm are that it is based on a
versatile probabilistic framework throughout all stages and that it is designed
for a rather unconstrained environment. Figure 1.1 gives a graphical overview
of our system and its environment. The light shaded area represents our system.
Two gray-level frames are used to compute optical flow with local confidence
estimates. In the second stage, illustrated with the dark shaded area, this flow
and previous motion parameters are used to estimate the inter-frame motion
parameters. This is done in a new iterative relaxation framework, our orig-
inal contribution. Within this framework Bayesian segmentation of the flow
and motion parameter estimation are performed alternately until the estimates

converge.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 describes and
explains the first stage of our algorithm, the computation of optical low. Why
we did not use a standard method for optical flow computation is explained
in section 2.1. How we compute local pixel velocities and confidence values is
described in sections 2.2 through 2.5. Section 2.6 shows how the presented flow
computation is applied in a Gaussian resolution hierarchy. Chapter 3 describes
how the results from the algorithm presented in chapter 2 are used to conduct
motion analysis in a probabilistic relaxation framework. The relaxation itera-
tively estimates parameters (section 3.2) and segments (section 3.3) the reliable
parts of an image pair. Upon convergence the estimation of the desired param-
eters for motion between two frames is completed. Chapter 4 explains how our

proposed algorithm is used when more than two frames are available. Chapter



Image Sequence

Motion Description

Gray-level
Frame
I
T 1
I 1
I
! Inter-Frame
: Motion
\ Parameters
I
! T
! |
e |
I
Gray-level . Parameter IREILAKATION I
Frame Previous Estimation HESRENCRIS !
Motion | | !
Parameters Probability :
: Updates ,
I
! Did Fitted No Inter-Frame
: Model Motion
\ change? Parameters
I
! T
I
Optical Segmentation Yes :
Flowwith | s | by Bayesian |
Gray-level | _— P | Confidences Classification I
Frame :
I
T I
1 I
I
! Inter-Frame
: Motion
\ Parameters
I
! T
! |
I
1
Gray-level
Frame

Figure 1.1: Overview of our proposed motion analysis system.



5 demonstrates applications of the output of our algorithm to obtain trajec-
tories (section 5.1), perform image stabilization and object tracking (section
5.2). Two illustrative examples are presented with the stages of our algorithm
and are explained at the end of chapters 2, 3 and 5. Chapter 6 discusses the
results of our algorithm on multiple longer example sequences. In chapter 7,
conclusions and proposals for future work are given. Appendix A gives some

details on the software package implemented for this thesis.



Chapter 2

COMPUTING OPTICAL FLOW VECTORS AND
THEIR CONFIDENCES

2.1 Similarities and Differences to Other Methods

The foundation of optical flow computation lies in the assumption
that image intensity is conserved. In other words, a gray-level pattern in the
image at time ¢ will also be in the image at time ¢+ 4¢, but eventually at a differ-
ent location. This location may be displaced from the original location by « in
z-direction and v in y-direction. Equation 2.1 formulates this mathematically,

as proposed first by Horn and Schunk in [38].

I(z,y,t) = I(z + Ug gy, Y + Uy, t + 01) (2.1)

For an adequately small inter-frame time dt¢, this assumption is true
and for larger dt this still is a good working hypothesis. The field of all dis-
placement vectors (ug,,vs,)? for each pixel location (z,y)” is called optical
flow. Optical flow computation is a highly non-trivial and well-known problem
in the computer vision literature, and many approaches have been documented.

A comparison of optical flow techniques can be found in [39].

We use our own flow algorithm because most existing algorithms do
not provide local confidence estimates for their output. Our algorithm is a

modified version of Singh’s approach [40] and employs a template-matching

10



11

methodology. A confidence estimate for each pixel’s velocity vector is prop-
agated through the algorithm to identify reliable regions where problems like

the aperture problem [1] [40] or motion boundaries are not significant.

2.2 Approach

Our approach to computing the optical flow is based on the inten-
sity conservation equation. Equation 2.2 is a generalized version of Horn and
Schunk’s original constraint [38] that takes into account a linear transforma-
tion (parameters a and m) and zero-mean signal independent additive Gaussian
noise n.

I(z,y,t) =a-1(x + Ugyt, Y + Vgyt, t +0t) +m+n (2.2)

The desired velocity vector (ug s, Vspy)” (the index ¢ will be omit-
ted from now on for easier reading) is computed for each pixel in the image
by comparing a small neighborhood (template) in the first image at location
(z,9)T with the neighborhood in the second image at a displaced location
(x + u,y +v)". This comparison, which will be explained in section 2.3, re-
turns the likelihood c¢;4(u,v), a measure of how well the sub-images match
for a certain displacement (u,v)”. We obtain measures for all possible dis-
placements within a searchwindow by performing this template-matching for
all possible displacements. We normalize all these correlation measures to ful-
fill the constraints for a probability mass function. The normalized correlation
measures as a function of 2-D displacement is called correlation surface c;y.
The displacement with maximum correlation is our maximum likelihood esti-

mate for the optical flow vector at this location (section 2.4). Following an



12

approach from Singh [40], we fit a continuous bivariate Gaussian probability
density function (pdf) to the correlation surface ¢;, by computing moments as
described in section 2.5. This fitted Gaussian pdf’s standard deviation o, is

indirectly proportional to the confidence in this pixel’s displacement estimate.

Most other techniques designed to only compute optical flow smooth
the optical flow field finally by assuming a global smoothness constraint [41]
[42] [43]. However we do not filter the raw flow field and we pass it unchanged
together with the confidence values to the second stage of our system (chapter
3). Smoothing at this point may yield a lower global error for the price of
less accuracy at high confidence locations. We decided to proceed this way
because only the accuracy of the high confidence locations is relevant for our

algorithm’s second stage.

2.3 Dissimilarity and Correlation Measures

In order to find out the position to which a gray-level pattern moved,
a measure to compare two different patterns of equal sizes is necessary. Wu
proposes in [43] a dissimilarity measure p(f, g) for two sub-images f and g
of the same size (Tmax)X(Ymax)- The two sub-images we will compare will be
the template and a candidate image. The size of the template in z— and y—
directions iS (Tmax)X(¥max). The correlation measure p(f,g) is basically the

correlation of the image gray-levels over a window, and is computed as follows:

sy s (fa,y) = F) - (9(@,y) - 9)

p(f,9) =
\/ (Zm sume (f(x,y) — f)Q) (Zgme Xy (g9(,y) — 9)°)

(2.3)
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where
o Tmax Ymax
f=——> > f(z,y) (2.4)
TmaxYmax z=1 y=1
and
Imax Ymax
g=—"—> > g(z.y) (2.5)

TmaxYmax 51 y=1

This dissimilarity measure is based on equation 2.2, and is the basis
for the correlation measure discussed later in this section. In the beginning
of the research another dissimilarity measure, known as the sum of squared
differences (SSD), was taken into consideration. This very simple measure is
defined in equation 2.6. Even though it is computationally less expensive, it
was dismissed because it was not robust in realistic and noisy scenes.

Tmax Ymax

SSD(f,9)= Y. > (f 9(z,y))? (2.6)

z=1 y=1

Equation 2.7 shows how the correlation measure ¢, ,(u, v) is now com-
puted from the dissimilarity measure p(f, g) of the two sub-images f and g. The
two sub-images compared are f from the original location in the first frame and

g from a potential displaced location in the second frame.
oy (11,0) = exp (—kp (50,3, 1), 50 + 1y + 0,84+ 60))  (27)

Here s, (x,y,t) denotes a sub-image from the original image sequence
I(z,y,t) at time ¢ centered at pixel (z,y). The horizontal and vertical dimen-
sions of this sub-image are w. By proper normalization through &, we assure

that

SN eaylu,v) =1 (2.8)

u v
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and, obviously, equation 2.7 implies

Coy(u,v) > 0. (2.9)

We compute this likelihood measure ¢, ,(u, v) for all possible displace-
ments (u,v)” of pixel (z,y)” within a searchwindow. The size of the search-
window is set by the user. At this point we now have computed the correlation
surface c;, inside the searchwindow for pixel (z,y)”. All values outside the
window are assumed to be zero, meaning that displacements greater than the

searchwindow do not occur (or, in other words, happen with probability zero).

2.4 Maximum Likelihood Estimate

Given the correlation surface and the fact that each of its entries
Czy(u,v) is a likelihood measure for a certain displacement, we simply pick the
displacement with maximum likelihood (ML) as our desired velocity estimate
(Ugy,Vzy)T- This is expressed in mathematical notation by equation 2.10.

( o ) = argmax, , (¢z, (4, v)) 210)

Uy

This scheme limits the precision of our optical flow algorithm to pixel
accuracy. Figure 2.1 illustrates this selection for a 1-D case. The x-axis lists all
possible displacements in the searchwindow, and the height of the bar illustrates
the likelihood of this displacement. Hence, the velocity estimate picked would

be 2 in the high confidence case and 3 in the low confidence case.

If there are multiple displacements yielding the global maximum of

the correlation surface, we assign a displacement estimate of 0 and mark it
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Figure 2.1: Illustration of ML estimation and confidence computation in 1-D.

with a high uncertainty. This case can be neglected for most real world appli-
cations. However for simple synthetic test sequences this special case must be

considered.

2.5 Confidence from Gaussian Fitting

After obtaining the estimate for the local pixel velocity vector as
described in the last section, we now discuss how we compute the associated
confidence value for this pixel. Every entry c,,(u, v) of the correlation surface
denotes the probability of a certain discrete inter-frame displacement (u,v)”
at pixel location (z,y)T. We interpret the correlation surface Czy as a discrete
approximation of the continuous parametric 2-D Gaussian pdf

C.1

z,y
2T

Pay(u,v) = exp (—1((u, U)T — ,umsy)TC;; (u, U)T — um’y)) . (2.11)

2

While computing the correlation surface c,, we made sure that it is

a 2-D probability mass function by introducing constraints 2.8 and 2.9. So,
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now the pdf’s mean vector p, , is estimated with least squared error from ¢, ,

as the momentum
U
Hzy = Z ch,y(“’ v) ( v ) (2.12)

and the 2x2 covariance matrix D, , is estimated as

o o
D,y = ( ) ST a1 0) - (1 0)7 — i) (1) — i)

Ozy3 Ozy,2
(2.13)

However, the assumption that the u— and v—directions are stochas-
tically independent and have equal variances is sufficient for our applications.
Hence we can use a simpler representation of the covariance matrix with only
one parameter o, ,. This covariance matrix D, , can now be written as

Cz,y = ( Ug’y 0 ) (2.14)

Oz,y

u
v — Hzy

The confidence values are the eigen-values of the covariance matrix

where
2

(2.15)

0326,1/ = Z Z cw;y(ua U)
u v

[40]. In our case of a diagonal covariance matrix, the two confidence values (one
for each dimension) are equal and are indirectly proportional to the standard
deviation. Now we have an estimate for the displacement vector (ugy, vy,)"
(from equation 2.10), and associated with that a confidence value 1/0,, (from

equations 2.12, 2.15).

Figure 2.1 shows the entries of the correlation surface as bars and
the fitted Gaussian pdf as an overlaid curve in a 1-D setting. At high confi-

dence locations, the bars have one maximum and have a small variability. In
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the low confidence environment, the function is multi-modal and broad. High

variability characterizes this behavior.

Figure 2.2 shows two exemplary correlation surfaces for the actual
2-D setting. The brightness of a pixel is proportional to the likelihood of its
displacement from the image center. Hence a single white spot in the center of
the image would illustrate the case where a displacement of (0, 0) is very likely

and all other displacements are very unlikely.

A high confidence in motion displacement is seen at image locations
which have sufficiently distinct features (e.g., corners) and thereby induce a
unimodal and sharply peaked correlation surface c;, such as seen in figure
2.2 (A). This surface would be interpreted as a high-confidence location with

estimated displacement towards the lower left of the searchwindow.

Low confidence occurs at locations with ambivalent or missing motion
cues, such as in regions with aliasing or regions without texture. A low con-
fidence correlation surface is shown in figure 2.2 (B). This correlation surface
corresponds to a location with a horizontal line segment. Due to the aperture
problem, this induced a high uncertainty in the x-direction. If we differentiate
confidence in the x- and y-directions, we would say that we are very confident
that there is no displacement in y-direction and we have low confidence in
our estimate that the displacement in x-direction is slightly to the left of the

searchwindow.
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(B)
Figure 2.2: Illustration of 2-D correlation surfaces with high (A) and low (B)

confidence.

2.6 Resolution Hierarchy — Coarse to Fine

In order to speed up the processing and to be able to deal with large
motions, a resolution hierarchy is used. Please refer to [44], [45], [46], [47] or [48]
for more detailed information on the advantages and techniques of resolution
hierarchies for motion computation. We use a Gaussian image pyramid and
our processing scheme is illustrated in figure 2.3. The base of the pyramid is
the image in its original resolution (figure 2.3, h = 1). Image dimensions are
reduced to 50% in each direction from one image to the next until the image
is smaller than a user-set threshold. Optical flow computation starts at this
low-frequency image (figure 2.3, h = 3). The velocity estimates obtained at
the lowest resolution is used as the initial guess for the next higher resolution
level (figure 2.3, h = 2). After refining the estimate at the higher resolution,
the results are again propagated to the next level. This process continues until

the original resolution level is reached. In other words, the major motion is
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recovered in the early stages and refined in the later stages. There is neuro-

psychological evidence that the human visual system uses a similar system.
h3ﬁ7
h=2 v (

[ N
e
/

Original Image

h=1 s

Figure 2.3: Illustration of hierarchical optical flow computation.

Confidence information is obtained on all stages of the hierarchy but
is not passed on to higher resolution stages. Thus the final confidence values

only rely on computations on the full image resolution.

By choosing this hierarchical structure, we inferred a certain amount
of smoothness of the displacement vectors over the image. However this hierar-
chical procedure enables the algorithm to deal with large inter-frame motions.
The algorithm’s ability to cope with large motions is best in the center of the
image. At the image margin only small motions can be correctly detected.
This is due to the fact that locations closer to the margin have fewer pixels in
their neighborhood, and a larger inter-frame motion requires more neighbors

for correct estimation.
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2.7 Treatment of the Image Margins

The treatment of the borders is an important issue in most image
processing tasks. Because we use a double-windowed approach to obtain our
flow estimates, we need information derived from the environment of each pixel
to compute the estimate. A pixel on the border does not have this environment.
Here, we define how the image extends beyond its margins. We considered the

following implementations:

A pixel outside is black

A pixel outside has random gray-level

A pixel outside is like its closest neighbor inside

A sub-image partly or totally outside is equal to the Euclidean closest

sub-image entirely inside

This list is ordered in ascending experimental performance results for
our algorithm. However, it is also possible to compute flow estimates for only
these pixels with sufficient environment. This implies cropping the image and,
hence, reduced output frame sizes. The preferred method depends in whether

“full-size” or “minimum error” output has higher priority.

2.8 [Illustrative Examples

The entire system described in this thesis was implemented in C++.
The end of chapters 2, 3 and 5 show practical examples of the algorithm applied

to example sequences. The two examples consist of two frames each, and were
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chosen to illustrate our algorithm and support its explanation in the text.

Results on longer, more complex sequences are presented later in chapter 6.

The synthetic Blood Cells Sequence consists of two images of blood
cells moving at resolution 300x300 pixels. All cells move horizontally 5 pixels to
the right. The ones in the left half of the image do not move vertically and the
ones in the right half move 3 pixels upwards. The template size is 9x9 pixels and
the displacement searchwindow is 5x5 pixels on each of the 4 resolution levels.
The optical flow field is sub-sampled by the factor 5 for printing purposes. The

resolution of the final output is 200x200 pixels.

Figure 2.4 shows the original two-image sequence truncated to the size
of the algorithm’s output. In figure 2.5 (A) the flow is depicted as a vector field,
and in figure 2.5 (B) the confidence values are shown. In the confidence image,

the brightness is proportional to the uncertainty about the flow estimates.

It is interesting to note that the motion boundary between the left
and the right half of the scene appears as a bright line in the confidence image.
This signals that the flow computation is rather unreliable in this area. This
makes sense, because optical flow is not defined at motion boundaries. Many
scenes include motion boundaries caused by depth discontinuities, occlusion or
independently moving objects. A motion boundary can be viewed as an edge
in the optical flow. Many efforts in flow computation are directed towards the
preservation of edges like this by robust filtering [21]. Because in our case we
are not interested in the flow itself, but its use for motion estimation, we do not
try to obtain good flow vectors everywhere. For our later processing we only

need a sparse optical flow field. Hence, it is more important to have accurate
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vectors at some locations than to have good vectors at every location.

Another region of high uncertainty is the bone-shaped bright blob
in the lower center region of the image. When looking at the corresponding
region in the original image, you will see that this region is homogeneously
white. Optical flow is a local measurement, and there are no gray-level fea-
tures in this neighborhood. Neither corner nor edge elements are present. More
generally speaking, this area has no texture and no features to provide motion
cues. Hence, it is impossible to estimate this location’s velocity vectors. Con-
sequently, this region appears bright in the confidence image, denoting low

confidence.

Figure 2.4: The two images of the synthetic Blood Cells Sequence.

The second example depicts a model vehicle driving to the right on
a cluttered table viewed from a downward-moving camera. The original image

resolution in this case is 320x200 pixels, and is reduced in 2 resolution levels
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Figure 2.5: Computed pixel-wise optical flow (A) and confidence values (B)
for the synthetic Blood Cells Sequence. In the confidence image, black = high
confidence, white = low confidence.

by the algorithm to an output of size 256x176 pixels. The template size is
11x11 pixels, and the searchwindow size is 7x7 pixels. The original two-image
sequence is shown in figure 2.6. Figure 2.7 (A) shows the flow vector field
sub-sampled by 5 and figure 2.7 (C) and (D) show the z- and y-component of
each vector from the field as a gray-level image. In figure 2.7 (C) the vehicle is
distinguished from the background because only the vehicle has horizontal flow
components. In figure 2.7 (D) the gradual increase in the absolute y-component
of the flow towards the lower image border nicely illustrates the recovered effects
of parallax. Figure 2.7 (B) shows the confidences in the optical flow field for

corresponding locations.
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Figure 2.6: The two images of the Vehicle on Table Sequence.




25

W--225
\N\TzmToo

L

tical flow (A) and confidence values (B)

-wise op

Computed pixel
for the Vehicle on Table Sequence.

2.7

igure

F

high

and y-component

, black

image

In the confidence

)

C

(

confidence, white = low confidence. The x-component

(D) of the opt

1 flow.

1Ca



Chapter 3

AFFINE PARAMETER ESTIMATION AND
BAYESTAN MOTION CLASSIFICATION

3.1 Statistical Framework

In chapter 2 we obtained the optical flow field. However, our desired
result is not a large vector field but a highly compact description of the motion
in the scene. This description can now be obtained in the form of parameters
of motion models. Various motion models have been proposed in the computer

vision literature. Three popular models in increasing order of complexity are:
e Translational Model
e Affine Model
e Planar Model
The translational model assumes a translation of the pixels in the
image plane. It has two parameters, namely the x- and y- offset. The transla-
tional model can be viewed as a special case of the affine model. This model
constrains image velocities to be an affine transform of the 2-D image coor-

dinates. Hence it has six parameters, four in form of a 2-D transformation

matrix (6;, 65, 0, and 05) and two for the 2-D offset (65, ). It is formally

26
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defined by equation 3.1 and is a special case of the planar model [27].

Ur \ _ 9i,1 0i,2 Ty 9z‘,3
( Uy ) N ( 91',4 92’,5 ) ( Yr ) + ( 01',6 ) (3'1)

The planar model is capable of describing the motion of a plane under
perspective projection. Besides these models, various 3—D approaches exist.
These 3-D models are successfully used today for scenes with only one motion,
the camera motion. The displacement pattern can be very complex in the
image. It depends on motion of camera and objects, as well as on the entire
scene structure. When trying to model these in full complexity in the presence
of multiple motions, the models needed have too many degrees of freedom and
are currently yielding very little robustness and low accuracy, so simplifying

models have to be employed.

Our proposed algorithm provides a framework for motion estimation
in which the motion model can be easily exchanged. For our practical imple-
mentation, we use an affine motion model. The affine motion model is well
researched and can model scenes with some parallax satisfactorily. Affine mo-
tion has six parameters and hence we need a minimum of three correspondences
(pixel velocities) for the estimation of the affine parameters. However, there
are many more vectors available (typically over 1000 pixel vectors). Posed as
an optimization problem, the question is how to fit the affine model to the pixel
velocity data and how to decide which pixel contributes to which affine motion.
In other words, how do we minimize error in the estimation of the parameters
(and hence maximize the quality of the model fit) and how do we segment the
image? In this chapter we propose a new Bayesian relaxation framework to

answer these questions.
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First, we extract a set of points with highly reliable displacement
vectors from the optical flow field. We call this set R; it is obtained by selecting
the N most reliable locations.! High reliability is defined here in terms of high
confidence or low variability o of the pixel velocity. N can be set by the user
or can be a function of the image size (e.g. select 10% of all image pixels).
A certain data point of this set R will be denoted as r in the rest of the
thesis and has a certain known location (z,,y,)" and direction (u,,v,)” (the
displacement from chapter 2). The rest of this section gives a brief overview of
the new Bayesian relaxation framework (as illustrated in the dark shaded area

in figure 1.1).

Assuming that exactly two affine motions are present in the sequence,
we partition the set of reliable points R into three disjoint sets Ry, R; and
Ry, representing rejection, primary, and secondary motion classes respectively.
The initial partitioning assigns points with a smaller than average magnitude
of displacement to R; and all other points to R,. Hence, the rejection class is

always empty at the initialization of the relaxation.

In the next step, we estimate the affine motion parameters 0; ;¢ for
each class i € {1,2}. Equation 3.1 is assumed to hold for each point r € R; and,
hence, with n; = |R;|, a linear system of equations with six unknown scalars
0i1..6 and 2n; (> 6) equations is given. We use the pseudo-inverse and the

Gauss—Jordan method to compute the least squared error estimate for 6; ..

Tn the C++ implementation we decided to approximate the sorting in descending order
of confidence and selecting the first NV pixel locations by selecting points with confidence
above a certain threshold. This threshold is computed through a binary search so that N
pixel are selected.



29

The estimates for 0, ;_¢ are now used to reclassify each point r € R.
Equation 3.11 is used to compute the model-based value for u, and v, for each
point and each motion i € {1,2}. We assume that the measured displacement
is the model based displacement affected by Gaussian zero—mean noise or an
outlier. Thus p(r/m;), the probability that point r’s displacement was caused
by motion 7, can be represented by a bivariate Gaussian pdf with the model-
based displacement for point r under motion ¢ as the mean and the unity
matrix as the covariance matrix. Moreover, equal a priori probabilities P(m;)
are assumed for each class. Now we can compute the a posteriori probability

P(my|r) using Bayes’ rule [37].

Utilizing a Bayes’ classifier, we find the new label [, for point r. If the
maximum a posterior: probability drops below a certain user—defined threshold
t, a safe decision cannot be made and hence we assign this point the rejection
class label 0. After determining the new labels [, for all points r € R, we re—
estimate the parameters 6; ;¢ as described above (I, = i < r € R;). We update
our probabilities through the new parameters and classify again. We iterate this
alternating estimation and classification process until our parameters do not
change from the current estimate to the next. The parameter optimization has
converged. Section 3.2 and 3.3 give a more detailed insight into the estimation

and classification steps, respectively.

Basically, both motion classes are treated equally. However, we have
to decide which class represents foreground and which background. Under
the reasonable assumption that the IMO accounts for less than 50 % of the

visible area and has as distinct features as the background we can make our
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decision simply as follows: The class with more members will be considered
the background class and its motion will be assumed to be caused by camera
motion. Accordingly, the class with fewer members will be considered the

object class undergoing image motion caused by camera and object motion.

This fails, for example, if we want to analyze a sequence of an airplane
flying in a homogeneous blue sky. However, it is not possible to correctly recover
object and camera motion in this case, because the background does not have
enough features. On a featureless background, it is impossible to tell which
component of the motion is caused by the camera and which by the object

moving.

3.2 Estimation Step (Yielding Probability Updates)

Every location r was assigned to a certain motion class ¢ during ini-
tialization. To estimate the parameters for the motion class i, we consider only
locations r that are currently labeled as i. Each motion class ¢ has six scalar
parameters, 0,1 through 6; ¢, which we assume to fulfill the affine motion con-
straint (equation 3.1) for all n; locations, r € R;, that currently are labeled i.
At this point u,, v,, z, and y, are known quantities for all n; = |R;| locations
r. So, equation 3.1 holds for each location r, and we obtain the linear equation

system 3.2 with six unknown scalars 6;;._¢ and 2n; equations (two for each
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location 7).

2 oy 1 0 0 0 0i1 w
0 0 0 z; 1 ziﬂ 7
Poror o 6. | =1 (3.2)
Tn Yo 1 0 0 0 9;5 Un,
0 0 0 z, y, 1 91:6 Up

This equation system 3.2 can be separated into two systems 3.3 and
3.4 of three unknown scalars each (6;1..3 and 6; 4.¢) and n; equations (one per

location) each.

r1 oy 1 0i1 Uy
: bio | =] : (3.3)

Tn Yn 1 0;,3 Up,

1 Yy 1 0; 4 U1
05 | =| (3.4)

Tn Yn 1 O;.6 Up,

In our case we can assume n; > 3 and, therefore, we have to use an
approximative method to solve for the motion parameters 6;,._¢. We decided
to use the pseudo-inverse approach, which minimizes the sum of the squared
error, to reduce the number of equations from n; in equations 3.3 and 3.4 to 3

in equations 3.5 and 3.6.

Ty - Ty ry 1 i1 T1 ' Tp 31
O N A N BE T I VTR O R B I C-)
1 --- 1 Tn yn 1 0;3 1 .- 1 U,
‘/El .« e ‘/ETL .’131 yl ]. 02.’4 xl PP :I’ln 'Ul
/yl PR yn . . 92.,5 — yl . yn . (36)

1 .- 1 T 0; | | n
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The closed form solution of the motion parameter estimates is now given by

equations 3.7 and 3.8.

-1

01 xy - 1 Y Ty Tn U1

bio | = Y1 Yn : (7 Yn :

0; 3 1 1 — 1 1 s
(3.7)

—1

O;,4 T Tp T Y 1 Tn U1

bis | = Y1 Yn : (7 Yn :

0; 6 1 1 A 1 1 o
(3.8)

Further simplification by explicit notation of the matrix operations leads to
equations 3.9 and 3.10.

—1

0; 1 Y¥ Yay Y > zu
0o | =] X2y Zv* Ty | Xyu (3.9)
91’,3 2T 2y 1 U
Bia Y22 Yoy Yo\ & [ Tav
bis | =| T2y Ty* Ty | Sy (3.10)
91‘,6 2 2y 1 v

The matrix inversion can simply be obtained by the standard Gauss-
Jordan method. With this scheme, we are able to obtain a least squared error

estimate of the six parameters 6; ; ¢ for each motion class 4 in the image.

3.3 Classification Step (Yielding Segmentation)

The estimated parametric model is now used to classify each pixel

in our set of reliable pixels R. We employ a Bayesian classifier to decide for
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each reliable pixel whether it belongs to the primary or secondary motion class
or is an outlier. Explicitly dealing with outliers as a separate class enhances
the robustness of our algorithm. By excluding highly improbable velocities
from the estimation process we avoid that these erroneous locations arbitrarily
worsen our results. The classification step described in this section leads to a

segmentation of the reliable parts of the image.

Using the model with the current set of parameters 6;, we can now
compute the model-based displacement (,,%,)T for a position 7 under the
hypothetical assumption that this location was generated by motion j. The
model-based displacement is the displacement vector we would expect, assum-
ing our current model and its parameters are correct. We compute the expected
displacement, (equation 3.11) using the same constraint we used to estimate

the affine parameters (equation 3.1). However, we solve for (i,,?,)T instead of

Uy Ty 9]'1 9j2 Ty 9j3
N =Jj = ’ ’ 3.11
(i)=n () =(o o) Gr)+(Bn) o

Assuming that the estimated displacement (u,,v,)T (see chapter 2)

1.6

is the ideal (according to the model) displacement (i,,%,)T affected by in-
dependent zero-mean additive Gaussian noise n with normalized deviation 1
(equation 3.12), the probability p(r|m;) that the displacement vector r was

generated by the j-th motion can be computed (equation 3.13).

(tr, v,)" = (@b, 0,)" + Noise (3.12)
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P(r|my;) = Na, 1(ur) - Ny, 1(vr) (3.13)
Nyols) = <= exp(—5 (o — ) (3.14)

Assuming equal a priori probabilities for both motions (P(m;) =
P(my) = 0.5), we can now use Bayes’ rule to classify each displacement vector
r. A location r is assigned to the motion by which it was created with the
maximum a posteriori probability P(m;|r) (equation 3.15). How the decision
is made for the new label [, is expressed formally in equation 3.16. In the
rejection case (I, = 0), the maximum a posteriori probability was too low to
make a good decision and the location 7 is considered undecided or, in other
words, an outlier.

p(rlmy) - P(my) _ p(r|my) - P(m;)

Plmilr) === - X;p(rimy) - P(my)

(3.15)

L { argmax;(P(m;|r)) if argmax;(P(m;|r)) >t

0 else (3.16)

We reclassify all locations r following this rule. At this point the
algorithm goes back to estimate the motion parameters again. This iteration
is performed as long as at least one classification of a location r changes. If
no changes occur, the algorithm terminates and the current motion parameters

are considered the final result for the current pair of images.
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3.4 Illustrative Examples

Here the results of the motion analysis on the examples introduced
in chapter 2 are presented. For the representation of the parameters, the x
and y coordinates of a pixel have to be defined. In our case the origin of
the axes is located in the upper left corner with pixel (0,0). The positive x-
axis goes rightward from there and the positive y-axis downward. The motion

parameters ¢, ¢ are computed in reference to this axis system.

Table 3.1 lists the final motion parameters of the synthetic Blood
Cells Sequence, which were obtained after one iteration step. The existing two
motions are correctly recovered. The matrix parameters 6;. 65, 63 and 6, are
all zero indicating that the motions present are only translational. The primary

2 are described as a translation of (5,—3)" and

motion and secondary motion
(5,0)T in the image plane, which are the exact parameters used to generate the

sequence.

Motion Class 6, 6, 63 04 05 0s Error Size
Primary Motion m; 0.0 0.0 5.0 0.0 0.0 -3.0 0.0 59.1%
Secondary Motion my 0.0 0.0 5.0 0.0 0.0 0.0 0.0 40.9%
Rejected 0.0%

Table 3.1: Final motion parameters for the synthetic Blood Cells Sequence.

Figure 3.1 (A) depicts the final segmentation. In the final classifica-
tion image, members of the primary motion are gray, members of the secondary

motion are white and the points not considered are black.

2Primary motion, motion class 1 and background motion are used equivalently. Ac-
cordingly secondary motion, motion class 2, foreground motion and object motion are also
synonymous.
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The original scene with the overlaid segmentation is shown in fig-
ure 3.1 (B). Here members of the primary motion class are colored green and
members of the second motion class are colored blue. Pixels not considered
(because they are unreliable or rejected by the classifier) remain uncolored.
Primary motion corresponds to background motion and secondary motion to

object motion.

The yellow square represents the detected centroid of the primary
motion. Attached to this square is a yellow line that points where this centroid
moves to in the image plane according to our motion analysis. Accordingly the
red square is the centroid of the secondary motion and the red line originating at
the red square shows direction and magnitude of the secondary motion centroid

as estimated by our algorithm.

Moreover there are two yellow boxes in the image. The darker box
illustrates the field of view of the camera in the first frame. The brighter box
shows where this field of view has moved to in the second frame according to the
results of our motion algorithm. In this case it illustrates that the background
frame of reference moves to the upper right between the two frames. These
two boxes depict the background or camera motion to the upper right or lower

left respectively.

The final Bayesian classifier was trained only on the reliable loca-
tions. Figure 3.2 shows the classification results if the final Bayesian classifier

is applied to the entire image, not only to the reliable locations.

The results on the Vehicle on Table Sequence are discussed in more

detail. Our algorithm converges in four iteration steps. Figure 3.3 and 3.5
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Figure 3.1: Final classification (A) and motion analysis illustration (B) of the
synthetic Blood Cells Sequence.

Figure 3.2: Full classification of the synthetic Blood Cells Sequence.
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show graphically how the parameters of primary and secondary motion change
over the iterations. The class specific average error per velocity vector and the
proportional class size for primary and secondary motion are graphed in figures
3.4 and 3.6, respectively. The class specific average error is computed as the
average Euclidean distance between the velocity vector from the flow field and

the velocity vector modeled through our algorithm.

Table 3.2 lists the total mean error of fit in pixels and the size of the
rejection class over all four iteration steps. The total mean error is continuously

decreasing from the initial iteration 1 to the final iteration 4.

Figure 3.7 show the corresponding classifications for the first itera-
tions 1 through the final iteration 4 (figure 3.7 (A) through (D)). The forced

full classification of the scene is shown in figure 3.8.

An illustration of the motion analysis results, using colors as described
earlier for the synthetic Blood Cells Sequence, is shown in figure 3.9. Please
note that the two yellow boxes show how our algorithm nicely models the 3-D

parallax in the scene with an affine transformation.

Iteration Total Error in Pixels Rejected
1 0.667770 0.000000 %
2 0.591061 2.252956 %
3 0.427410 2.922150 %
4 0.369866 0.000000 %

Table 3.2: Total mean error and rejected proportion for Vehicle on Table Se-
quence.
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Figure 3.7: The subsequent classifications in the four iteration steps of the
Vehicle on Table Sequence.

Figure 3.8: Full classification of the Vehicle on Table Sequence.
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Figure 3.9: Motion analysis illustration of the Vehicle on Table Sequence.




Chapter 4

PROCESSING OF LONGER IMAGE SEQUENCES

4.1 Integrating Information from Multiple Frames

Our system, as described so far, has only analyzed two successive
frames. Of course, in most real-world applications, longer sequences have to
be analyzed. This chapter presents our approach to use our new framework
in this setting. The relaxation framework described in chapter 3 is a local
optimization algorithm and its success, like all of its kind, strongly depends
on its initialization [49]. So when we process a longer image sequence we
initialize the current motion parameters with the results from the previous
pair of images before we start the relaxation. This solves the initialization
problem and additionally provides a speed-up in processing. Implicitly however
it assumes a certain smoothness and consistency of motions over time. This
is very reasonable because neither objects or camera will rapidly change their

motion parameters due to inertia given an appropriately high frame rate.

4.2 Class Consistency

Another difficulty arises when processing longer sequences: We have
to make sure that the two classes extracted from each pair of frames are labeled
consistently. In other words the background class in one frame must be the

background class in the next frame. Background and foreground classes should
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not be swapped from one frame to the next. This correspondence can be

established with one of the following three strategies

e The class with more members is always the background.

e A class gets the same label as the class with the most similar parameters

in the last frame.

e A class gets the same label as the class in the last frame whose centroid

is closest to the current class’ centroid.

The first strategy should be used if the background always has more
features than the background. The second strategy is useful if the first is not
given but the present motions are smooth and do not change abruptly over
time. The last strategy is employed when the other two cannot be used. The
best choice has to be made dependent on the scene (object size, distance and
inertia) and the used imaging technique (optical, infra-red, range images [50],

camera mounting).

4.3 Empty Classes

Eventually it may happen that one class has no locations assigned
during the relaxation process. In other words one of the two classes becomes
empty in the process of classifying and updating probabilities. This is a strong
indicator that the processed sequence contains only one motion. One of the two
classes vanishes if the motion in the scene can be satisfactorily described with
only one affine motion. So all points are classified into the same motion class

and the other one is empty. This means that we can no longer estimate the



45

affine parameters for the empty class. We could stop processing at this time
and argue that there is only one motion present in the scene, or that the two
motions are not distinct enough. However we assumed for our approach that
two affine motions are present, so instead we repeat the relaxation procedure,
however, we will not carry over the parameters from the last frame. Instead,
we reinitialize the two classes by splitting them at the mean of their velocity
magnitudes, as we did in the processing of the first two frames. If one class
becomes empty again, we accept this by assuming only one affine motion and
move on to the next frame. In the next frame, we will assume two motions

again, hoping that now there are two sufficiently distinct motions.



Chapter 5

APPLICATIONS

5.1 Obtaining Trajectories

One possible application of the motion description obtained by our
algorithm is to obtain the trajectory of an independently moving object ob-
served by a moving camera. To accomplish this, we first must compute the
affine motion parameters of both classes and the centroids of the motion seg-
ments over the entire sequence. The affine motion parameters are computed
as described in chapter 3. Equation 5.1 describes how the centroid (X, Yj0)"
of the j-th motion (j € {1,2}) is computed in frame 0. R; is the set of all

locations in the image assigned to motion class j as used in chapter 3.

%) mz ()
’ = — 5.1
( Yo | R;| ng Yr 1)

We are interested in computing the projection of the 3 D trajectory in
the scene onto the 2-D image plane. From the affine parameters and the IMO
centroid in the first frame, a trajectory of the IMO is obtained by applying the
affine transformation with the estimated parameters for the secondary motion

class (object motion, j = 2) to the object centroid in the first frame.

Compensating for camera motion is conducted by subtracting the

effects of the primary motion transformation (camera motion, j = 1) from the
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object centroid’s motion. This is done successively for all frames to obtain a

trajectory corrected for camera motion.

Equation 5.2 gives the recursive formula for computing all successive
object centroid locations (Xq4, Yo,)? (with ¢t € {1,2,...,lastframe}) in the
frame of reference of the first frame 0. Let f; ~L denote the coordinates trans-
formation from frame ¢ — 1 to ¢t under motion j € {1,2}. The function f;il’t

corresponds to f; as defined in equation 3.11 in chapter 3.

XQt X2 t—1 t—1,t X2 t—1 t—1,t X2 t—1
P = [ ) gt D) g2 5.2
( Yo ) ( oo ) TP v ) T v (5.2)

This sequence of object centroid locations (Xy 4, Yo)T is the desired 2-D tra-

jectory.

5.2 Image Stabilization and Object Tracking

Here image stabilization means image registration while taking an
independently moving object into account. For these applications, not only
inter-frame motion descriptions are desired, but transformations that describe
the motion to the current frame from a frame of reference which may be sev-
eral frames ago. The total transformation f](-) * over multiple frames can be

decomposed as the concatenation of successive inter-frame motions:
0t _ pt—1,t 01
fj = fj © fj (5.3)

The stabilized image regarding motion j can now be obtained by

0.1

)" to project the current frame ¢ into the

applying the inverse transform (

coordinates of the reference frame 0. In order to compensate for background
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motion or object motion we use 7 = 1 or j = 2, respectively.

()= (3) o

If this inverse transform, as described by equation 5.4, is applied with
j = 1 to all pixels (zy, ;)" in frame ¢ and the estimated motion parameters
(chapter 3) were correct, the background in the projected image will be sta-
tionary compared to the frame of reference 0. If this transform is successfully
applied to all frames of a sequence only the motion of the object will remain. Of
course this assumes not only correctly estimated parameters but also that the
motions present can be satisfactorily modeled with the assumed affine motion

model.

If subsequent frames are superimposed after they have been backpro-
jected to the same frame of reference, a mosaic of the observed scene is obtained
[29] [30]. When new parts of the scene become visible due to the camera mo-
tion, these are added to a scene image larger than each single frame. In this
stabilized and mosaiced sequence we can now apply dynamic scene analysis

tools for the SCMO case, for example difference images.

On the other hand, when we use 7 = 2 the coordinate transform will
compensate for the object motion in the scene. Doing so for several frames
will yield a sequence with a stationary object and and moving background.
This is equivalent to tracking the object. Once detected in the first frame, the
backprojection tracks the object by keeping it stationary in the transformed

sequence.

Of course the described backprojection for either case, j =1 or j = 2,
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is only meaningful up to a reasonable maximum number of frames. The mag-
nitude of motion increases as more frames lie between the current frame and
the frame of reference. The errors accumulate because of the concatenation ar-
chitecture, so a reset to a new frame of reference eventually becomes necessary.
The actual decision rule on how to reset the frame of reference depends on the

actual stabilization or tracking application.

5.3 Illustrative Examples

In the synthetic Blood Cells Sequence the left side of the image is
considered the object and the right side the background. In figure 5.1 the object
centroid is illustrated by the red square and the red line extending downwards
from there expresses that the left side of the image is moving downward in
frame of reference of the right side. Recalling that the left half translates
(5,0)T pixels and the right half translates (5, —3)7 pixels in the image plane,
the trajectory of the centroid of the left half in reference to the right half
is 3 pixels downward. This fact was correctly recovered and is illustrated in
figure 5.1. The sequence transformed such that the right half of the scene
(the background) stays stationary is depicted in figure 5.2. Accordingly, in
figure 5.3 the left half of the scene does not move. The stabilized and mosaiced
sequences are always produced at double height and width. This enlarged
size is necessary to properly illustrate registration of displaced images while

performing stabilization and mosaicing.

The usefulness of this applications may become more apparent in the

Vehicle on Table Sequence. Figure 5.4 show the computed trajectory of the
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Figure 5.1: Trajectory of the synthetic Blood Cells Sequence.

vehicle on the table. The vehicle’s motion is no longer described as motion to
the right and upwards as in figure 3.9. We successfully computed the path of
the vehicle horizontally to the right as indicated by the red line. This is due
to the correction for the camera motion downwards. In figure 5.5 the sequence
is depicted compensated for camera motion. Despite the presence of strong
parallax the background registration shows no visible errors. The sequence

backprojected to obtain a stationary object is depicted in figure 5.6.
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Figure 5.2: Background stabilized synthetic Blood Cells Sequence.

Figure 5.3: Object stabilized synthetic Blood Cells Sequence.
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Figure 5.4: Trajectory of the Vehicle on Table Sequence.

Figure 5.5: Background stabilized Vehicle on Table Sequence.

Figure 5.6: Object stabilized Vehicle on Table Sequence.




Chapter 6

DISCUSSION OF EXAMPLES

6.1 Can on Table Sequence

This sequence was taken frame by frame with a digital camera at a
resolution of 320x200. It shows a moving can on a table. The camera tracks
the can and tries to keep the can in the center of the view. The camera was
hand-held and the motion of the camera is not smooth. The prevailing ego-
motion is rotational and a minor translational component. Figures 6.1 to 6.6
show the frames of the sequence and the results of our algorithm. The figures
are arranged one per page so the reader can try to “watch” the sequence and
the results like a flip-book. It may be hard to see the effects of our algorithm
in the disjoint frames, but it becomes intuitively clear when seeing them as a

movie.

The sequence of (D) images shows how our algorithm can be used
to stabilize the original sequence in reference to the background. In the (D)
sequence, the effects of the camera motion are successfully removed by using
the motion parameters our algorithm estimated to inverse-transform camera
motion effects. All images are projected into the frame of reference of the first
image and subsequently superimposed. The match of the superimposed new
image, which was projected in the frame of reference of the first image, to the

previous images is a measure for the quality of the motion estimation.
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The series of (E) images uses the output of our algorithm to compen-
sate for object motion. The (E) sequence is generated like the (D) sequence
but this time the object motion parameters are used. Hence, object motion
is removed and this results in a tracking sequence: the object remains in the
same image location regardless of where the camera moves. (Of course, the
object has to be kept within the angle of view.) In the Can on Table Sequence
we were trying to track the can over time. While we were manually keeping
the can in view, our algorithm was used to refine the tracking (stabilize the

can) and keep it almost motionless in the center of each frame.

Figure 6.7 integrates information from the (D) and (E) series. Tt
finally shows the trajectory of the object. This trajectory shows the 2-D path
of the object in a stabilized background frame of reference. In other words it
shows where the object moves in the scene, not where the object moves in the

image plane.
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Figure 6.1: Frames 0 (A) and 1 (B) of the Can on Table Sequence. Illustration
of inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 1.
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Figure 6.2: Frames 1 (A) and 2 (B) of the Can on Table Sequence. Illustration
of inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 2.
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Figure 6.3: Frames 2 (A) and 3 (B) of the Can on Table Sequence. Illustration
of inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 3.
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Figure 6.4: Frames 3 (A) and 4 (B) of the Can on Table Sequence. Illustration
of inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 4.
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Figure 6.5: Frames 4 (A) and 5 (B) of the Can on Table Sequence. Illustration
of inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 5.
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Figure 6.6: Frames 5 (A) and 6 (B) of the Can on Table Sequence. Illustration
of inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 6.
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Figure 6.7: Object trajectory obtained from Can on Table Sequence. The
trajectory is backprojected and overlaid with the first frame 0.
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6.2 Car Sequence

This sequence shows a car driving to the left on a road viewed by
a downward panning camera. Figures 6.8 to 6.15 show the original image
pairs (A) and (B), the motion analysis illustration (C), background stabilized
(D) and object stabilized images (E). The recovered trajectory of the object’s

centroid is depicted in figure 6.16.
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Figure 6.8: Frames 0 (A) and 1 (B) of the Car Sequence. Illustration of inter-
frame analysis results (C). Mosaiced image with stabilized background (D) and
image stabilized in reference to object (E) after processing frames 0 to 1.
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Figure 6.9: Frames 2 (A) and 3 (B) of the Car Sequence. Illustration of inter-
frame analysis results (C). Mosaiced image with stabilized background (D) and
image stabilized in reference to object (E) after processing frames 0 to 3.
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Figure 6.10: Frames 4 (A) and 5 (B) of the Car Sequence. Illustration of inter-
frame analysis results (C). Mosaiced image with stabilized background (D) and
image stabilized in reference to object (E) after processing frames 0 to 5.
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Figure 6.11: Frames 6 (A) and 7 (B) of the Car Sequence. Illustration of inter-
frame analysis results (C). Mosaiced image with stabilized background (D) and
image stabilized in reference to object (E) after processing frames 0 to 7.
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Figure 6.12: Frames 8 (A) and 9 (B) of the Car Sequence. Illustration of inter-
frame analysis results (C). Mosaiced image with stabilized background (D) and
image stabilized in reference to object (E) after processing frames 0 to 9.
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Figure 6.13: Frames 10 (A) and 11 (B) of the Car Sequence. Illustration of
inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 11.
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Figure 6.14: Frames 12 (A) and 13 (B) of the Car Sequence. Illustration of
inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 13.
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Figure 6.15: Frames 14 (A) and 15 (B) of the Car Sequence. Illustration of
inter-frame analysis results (C). Mosaiced image with stabilized background
(D) and image stabilized in reference to object (E) after processing frames 0
to 15.
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Figure 6.16: Object trajectory obtained from Car Sequence. The trajectory is
backprojected and overlaid with the first frame 0.
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6.3 FLIR ATR Sequence

We also applied our algorithm to a Forward Looking Infra Red (FLIR)
image sequence used for Automated Target Recognition (ATR). The original
sequence consists of 290 frames. The sequence can be partitioned into two
phases. In the first phase, the camera is approaching a bright feature on the
ground plane. No significant independently (from the camera) moving object
is present. This is not according to our assumption of two motions, and conse-
quently this part of the sequence gets over-segmented. However, our algorithm
still provides satisfactory stabilized images that are compensated for camera

motion.

During the second phase, a vehicle enters the scene from the right
and moves towards the center of the image, while the camera is still moving
forward. The entire sequence was sub-sampled before processing. We decided
to use every third frame and consequently we processed 97 frames. The first
phase of the sequence includes frames 0 to 64, and the second, frames 65 to
96. The quality of this sequence is very poor for our purposes compared to

common visual sequences. The sequence exhibits:

e Low contrast
e Base gray-level fluctuation
e Artifacts on the right image margin (scan-line ends)

e Stationary contamination (black spots) in the optical system with more

contrast than in the actual scene
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e Very few features in scene
e Only two bright reliable blobs to track

e Sudden and very large image displacements (struck camera)

We decided to cut four pixels on each side because of the artifacts on
the right image margin. For future experiments, the utilization of a contrast-
normalizing preprocessing stage should be considered. The fact that only two
good trackable features are present limits the accuracy of the estimation. This
becomes obvious, especially towards the end of the sequence as errors accumu-

late.

Figures 6.17 to 6.23 show the first part of the original sequence and our
motion analysis results. Please note that only every tenth pair is displayed. Due
to the fact that this part of the sequence does not contain two distinct motions

as is a required for our algorithm the motion analysis results are oversegmented.

Figures 6.25 (A) to 6.31 (A) present the background stabilization
results for the first part of the sequence. The images are still properly registered
despite the severe violation of the two motions assumption. The forward motion
is clearly recovered and illustrated by the size reduction of the backprojected
frames in the (A) sequence towards the end. The object stabilized series (figures
6.31 (B) should in principle be the same as the (A) series in the absence of an
IMO. However fewer vectors are used to estimate object motion. Hence, the
total object motion transformation accumulates more errors over time and the

(B) sequence deviates significantly form the (A) sequence. The trajectory as
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presented in figure 6.24 shows that the IMO did not move much in the scene

over time. In other words, there is no IMO, which is true.

For printing purposes the gray-level palette of all images in this thesis
has been spread to use the entire range. In the stabilized and mosaiced images,
however, this was not done to maintain the same reference palette for all frames.
Hence fluctuations in base gray-level of the low quality input sequence are
visible in the stabilized and mosaiced images (figures 6.25 to 6.31 and 6.43 to
6.52) but remain unnoticeable in the print of the original sequence and motion

results (figures 6.17 to 6.23 and 6.32 to 6.41).

_

Figure 6.17: Frame 0, frame 1 and motion analysis of FLIR ATR Sequence.

Figure 6.18: Frame 10, frame 11 and motion analysis of FLIR ATR Sequence.
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Figure 6.19: Frame 20, frame 21 and motion analysis of FLIR ATR Sequence.

Figure 6.20: Frame 30, frame 31 and motion analysis of FLIR ATR Sequence.

Figure 6.21: Frame 40, frame 41 and motion analysis of FLIR ATR Sequence.

Figure 6.22: Frame 50, frame 51 and motion analysis of FLIR ATR Sequence.
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Figure 6.23: Frame 60, frame 61 and motion analysis of FLIR ATR Sequence.

Figure 6.24: Object trajectory obtained from FLIR ATR Sequence. The tra-
jectory is backprojected and overlaid with the first frame 0.
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(A)

(B)

Figure 6.25: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 0 to 1 of the FLIR ATR

Sequence.

(A)

(B)

Figure 6.26: Mosaiced image with stabilized background (A) and image sta-
bilized in reference to object (B) after processing frames 0 to 11 of the FLIR

ATR Sequence.
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(A)

(B)

Figure 6.27: Mosaiced image with stabilized background (A) and image sta-
bilized in reference to object (B) after processing frames 0 to 21 of the FLIR

ATR Sequence.

(A)

(B)

Figure 6.28: Mosaiced image with stabilized background (A) and image sta-
bilized in reference to object (B) after processing frames 0 to 31 of the FLIR

ATR Sequence.
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(A)

Figure 6.29: Mosaiced image with stabilized background (A) and image sta-
bilized in reference to object (B) after processing frames 0 to 41 of the FLIR
ATR Sequence.

(A)

Figure 6.30: Mosaiced image with stabilized background (A) and image sta-
bilized in reference to object (B) after processing frames 0 to 51 of the FLIR
ATR Sequence.
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(A)

Figure 6.31: Mosaiced image with stabilized background (A) and image sta-
bilized in reference to object (B) after processing frames 0 to 61 of the FLIR
ATR Sequence.
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Figures 6.32 to 6.41 depict the second part of the sequence and our
motion analysis illustrations. In this part a truck driving to the left enters the
scene from the right. The independently moving truck is successfully segmented
from the background. The background in this case mainly consists of the
stationary tank in the center of the view. In frame 79 to frame 80 the two
vehicles have moved to close together so that their motion estimation becomes
unstable. The camera gets struck heavily from frame 80 to frame 81 and both
objects are displaced far from their previous locations. Our system cannot
recover the correct location correspondences for this pair of frames with the

used parameters.

The stabilization and mosaicing results are presented in figures 6.43
to 6.52. Due to the fact that the stabilized sequences are totally dependent
on all results since the frame of reference, errors accumulate over time and the
stabilized sequences cannot recover from the major misinterpretation between
frames 80 and 81. As described in chapter 4, a reset to a new frame of ref-
erence would be necessary. In figure 6.42 the beginning of the trajectory is
accurately recovered. Starting with the bend towards the upper image margin,
the trajectory is erratic. Considering the low quality of this sequence with a
lack of features and significant jumps in camera orientation and base image

brightness, the presented results are very good.
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Figure 6.32: Frame 72, frame 73 and motion analysis of FLIR ATR Sequence.

Figure 6.33: Frame 73, frame 74 and motion analysis of FLIR ATR Sequence.

Figure 6.34: Frame 74, frame 75 and motion analysis of FLIR ATR Sequence.

Figure 6.35: Frame 75, frame 76 and motion analysis of FLIR ATR Sequence.
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Figure 6.36: Frame 76, frame 77 and motion analysis of FLIR ATR Sequence.

Figure 6.37: Frame 77, frame 78 and motion analysis of FLIR ATR Sequence.

Figure 6.38: Frame 78, frame 79 and motion analysis of FLIR ATR Sequence.

Figure 6.39: Frame 79, frame 80 and motion analysis of FLIR ATR Sequence.
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Figure 6.40: Frame 80, frame 81 and motion analysis of FLIR ATR Sequence.

'lu-‘I

H

Figure 6.41: Frame 81, frame 82 and motion analysis of FLIR ATR Sequence.

Figure 6.42: Object trajectory obtained from FLIR ATR Sequence. The tra-

jectory is backprojected and overlaid with the first frame 72.
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(A)

(B)

Figure 6.43: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 73 of the FLIR

ATR Sequence.

(A)

(B)

Figure 6.44: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 74 of the FLIR

ATR Sequence.
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(A)

(B)

Figure 6.45: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 75 of the FLIR

ATR Sequence.

(A)

(B)

Figure 6.46: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 76 of the FLIR

ATR Sequence.
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(A)

(B)

Figure 6.47: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 77 of the FLIR

ATR Sequence.

(A)

(B)

Figure 6.48: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 78 of the FLIR

ATR Sequence.
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(A)

(B)

Figure 6.49: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 79 of the FLIR

ATR Sequence.

(A)

(B)

Figure 6.50: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 80 of the FLIR

ATR Sequence.
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(A) (B)

Figure 6.51: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 81 of the FLIR
ATR Sequence.

Figure 6.52: Mosaiced image with stabilized background (A) and image stabi-
lized in reference to object (B) after processing frames 72 to 82 of the FLIR
ATR Sequence.




Chapter 7

CONCLUSION

7.1 Summary

In this thesis we have presented a new algorithm for estimation of
two affine motions through the use of a Bayesian formulation in the image
sequences of moving objects observed with a moving camera. We have ad-
dressed the problems of optical flow computation, motion segmentation and
estimation within a new probabilistic framework. The new system assumes
very little knowledge about the presented scene. It neither requires the object
and background to be separated by contour lines, nor that the object is one
compact region. Hence fragmented multiple motions pose no problem. Results
and applications of our algorithm to synthetic and real-life image sequences

have been demonstrated.

7.2 Future Work

Our proposed algorithm provides a Bayesian framework which allows
for an easy change of the motion model. The currently used affine model can
be replaced by another model, such as the planar or projective model [27]. To
implement another model, only a parameter estimator routine is needed. This
parameter estimator can then be used instead of the estimator described in

section 3.2. Moreover, knowledge about the probability distributions of the
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optical flow vectors can be used by replacing the current Gaussian family with
another distribution family [51]. Another direction of future work could be the
incorporation of multiple motion models. Based on an error measure from the
Bayesian approach, the algorithm then could pick the appropriate model for a

presented sequence.

While the previous proposals for future improvements addressed the
motion analysis stage (chapter 3), which is our original contribution, the op-
tical flow module (chapter 2) can also be modified. If a real-time system is
desired the use of available on-chip optical flow solutions can be considered.
On the other hand, instead of computing the optical flow and selecting reliable
locations, we could also select features (e.g., with a Moravec operator [52])
and track them [53]. This would provide fewer but more robust velocity vec-
tors to the motion estimation stage. However, the effect on motion estimation

performance needs to be investigated.

It may also be rewarding to apply a robust spatio-temporal filter to
the parameters in order to be able to deal with occlusion or estimation errors
over multiple frames. A different approach for future extensions could be the
integration of other sensor-data. Global Positioning System (GPS) information
could be used in combination with our algorithm to build an active vision
system able to track the independently moving object. Another idea would be
to use the obtained motion information to predict the behavior of camera and

object or predict future image frames.



Appendix A

DESCRIPTION OF SOFTWARE

The proposed algorithm was implemented by the author of this thesis
in ANSI C++ and can be run portably on any UNIX platform. It requires the
TTFF image format libraries and a C++ compiler. Both are easily available
for almost all systems. The system was tested under AIX, Solaris and Linux.
The processing is split into two executable modules, namely of and amas. The
program of does the optical flow computation with confidence values as de-
scribed in chapter 2 from a pair of .tif-images and writes out proprietary
.of-files for future processing. These files are read by amas which conducts the
motion analysis according to chapter 3. The amas program writes out TIFF im-
ages illustrating the results as well as the numeric estimated parameter values.
The following two sections give details on usage, command-line parameters and

options of the implemented programs.

A.1 Optical Flow Computation — of

The program of computes the optical flow and confidence values as
described in chapter 2. The image sequence has to be available as TIFF images
with filenames filename-stub##.tif. Here ## is the two digit number of the
frame. This filename-stub must be given to of as the command-line parameter.

Upon unsuccessful execution a short help text is printed. The following options
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can be set when calling of:

e -w # sets the diameter of the searchwindow in pixels. This parameter
determines the maximum displacement that the program could theoret-

ically recover. The maximum detectable displacement can be computed

windowsize—1 ohierarchylevels-1

as 5

. The number of hierarchy levels is
determined by the image size in pixel. of will create another hierarchy
level by halving the image size in the x- and y-directions until the im-
age size is smaller than 32x32. Please note that computation-time grows

quadratic with the window size parameter. The default value for the

windowsize is 7.

e -t # sets the diameter of the template in pixels. This parameter sets
the size of the sub-images or blocks that are compared to estimate the
displacement vectors. Increasing this parameter affects the computation-
time with a quadratic growth. Moreover increasing this parameter results
in a stronger rigidity assumption. The default value for this parameter is

9.

e —s # sets the number of the first frame the program will process. The
default value for the first frame is 0 and cannot exceed 99 due to a filename

convention implying that the frame number has two digits.

e —¢ # sets the number of the last frame the program will process. The
default value for the last frame is set to the filename convention based

maximum of 99.
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e -b # sets the number of pixels that are cut off on all four borders of each
image of the sequence before processing. This is useful for images that
have distortions close to the border. Low-quality visual cameras or FLIR
cameras eventually have noisy or erratic gray-levels at the beginning and
end of a scan-line. With this parameter these pixels can be excluded so
the results are not corrupted. The default value for this parameter is 0,

assuming a high-quality camera with no distortions at the border.

e -n makes the program process the data only at the original resolution. No

resolution hierarchy is employed. Only the original resolution is consid-

windowsize 1

ered and the maximum detectable displacement hence is 5

A.2 Motion Estimation — amas

The amas program expects the completion of of’s execution and fol-
lows the same call-syntax and filename-conventions as of. It also expects the
filename-stub as the command-line parameter. While amas is processing it
sends current numeric results on motion estimation to stdout and messages
on computation status to stderr. If not called correctly, it prints out a short
help text. Options using the same character as options in of have the same
effect. These options are w, t, s, e. The options b and n are not used by amas.

The following additional options can be used:

e -m # sets the mode of how amas selects which motion class represents
foreground and which background (see section 4.2). Mode 1 is the default
and means amas will pick the larger motion class to be background in the

first frame and will not enforce this in the rest of the sequence. This
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means that that class label will be based on motion parameter similarity
in subsequent frames. Mode 2 is like mode 1, but amas will enforce the
larger motion class to be background in every frame of the sequence.
Modes -1 and -2 correspond to modes 1 and 2, respectively. Whenever
using a negative mode amas will exchange background and foreground as

compared to the corresponding positive mode.

-p # sets the percentage of pixels that should be used for the motion
estimation. amas will automatically select the n most reliable pixels,
where n is the given percentage of the total number of pixels per frame.
By default amas will select ten per cent (.1) of the total number of image

pixels.
-f makes amas write out all images generated during processing.

-x makes the program use the entire image. No margins are cut off to
provide sufficient pixel environment for all processed locations. Thus
erratic border locations may be included into the estimation. This is
only recommended if the objects are often close to the image margins

and motions are rather small.

-c makes amas use the translational motion model (equation A.1) in-
stead of the affine motion model (equation 3.1). The translational mo-
tion model is the simplest motion model and a special case of the affine
motion model for 6; = 6, = 0, = 05 = 0. It is also called constant
motion model because motion vectors ares not dependent on their image

location. Using this feature is recommended wherever a constant mo-
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tion model is appropriate, for example, when processing sequences from

(2)=(52) &

Some parameters for of and amas, which in general do not need modification,

a pan-tilt camera.

can be changed by updating the defines.h file and rebuilding the executables.

This thesis, animated graphics of the discussed examples, and recent
advances of the author’s research are available on the Internet at the author’s

web-site http://rhine.ece.utexas.edu/~strehl.
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