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Abstract. In this paper, we present a method called MOD-
EEP (Motion-based Object DEtection and Estimation of
Pose) to detect independently moving objects (IMOs) in
forward-looking infrared (FLIR) image sequences taken from
an airborne, moving platform. Ego-motion effects are re-
moved through a robust multi-scale affine image registra-
tion process. Thereafter, areas with residual motion indicate
potential object activity. These areas are detected, refined
and selected using a Bayesian classifier. The resulting re-
gions are clustered into pairs such that each pair represents
one object’s front and rear end. Using motion and scene
knowledge, we estimate object pose and establish a region
of interest (ROI) for each pair. Edge elements within each
ROI are used to segment the convex cover containing the
IMO. We show detailed results on real, complex, cluttered
and noisy sequences. Moreover, we outline the integration of
our fast and robust system into a comprehensive automatic
target recognition (ATR) and action classification system.
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1 Introduction

1.1 Motivation

Forward-looking infrared (FLIR) images are frequently used
in automatic target recognition (ATR) applications. ATR cov-
ers a variety of semi-automated and automated operations
ranging from cuing a human observer to potential targets
to fire-and-forget. Many researchers have investigated var-
ious approaches to detection, recognition and pose estima-
tion of targets fromstatic FLIR images. A comprehensive
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recent review by Ratches et al. on techniques for image-
based ATR systems can be found in [RWBG97]. A variety
of techniques todetect targets in static images have been
proposed. Early work often was data-driven and used ad
hoc methods such as thresholding based on the contrast
of an object compared to the local background or pixel
statistics. Later algorithms used knowledge-based systems
and template-matching approaches. More recent research fo-
cuses on model-based approaches and multi-sensor fusion
[NA92, RCM+95, BDZ+97]. While common ATR systems
can track objects based on a series of single-frame detec-
tions, motion has been neglected as a cue to target detec-
tion and pose estimation. Motion information can be a very
strong aid for finding objects in images as many biological
vision systems indicate [Wan95]. So, rather than obtaining
motion as a post-processing result of single-frame detection,
we propose MODEEP, a method for motion-based object
detection and estimation of pose. Includingdynamicscene
information in a static ATR system adds an independent cri-
terion that can significantly increase detection rates and de-
crease false alarms.

Today, many techniques exist for the motion analysis of
visible-spectrumimagery [BA96, AN89, MDD+95, IA98,
TZ98]. Irani and Anandan differentiate scenes and the ap-
propriate algorithms along a 2D to 3D continuum [IA98]. In
2D analysis, the scene can be approximated by a flat surface
and the camera undergoes mainly rotations and zooms. 3D
scenes are characterized by significant depth variations in
the scene and a translating camera. Successful motion anal-
ysis requires using the appropriate model for the processing
environment. That is, recovering structure from motion fails
when features are sparse or the camera does not undergo
sufficient translation.

In this paper, we present a motion-based object detection
system tailored for FLIR sequences. Our FLIR sequences are
taken from a moving platform and depict scenery as well as
independently moving objects (IMOs). This case represents
the most general scenario of motion because observer mo-
tion andobject motions inducemultiplecoupled motions. In
our approach, we compensate for the observer motion (ego-
motion) that makes the background stationary. After remov-
ing the effects of ego-motion, any residual motions must be
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due to moving objects. We use these residual motion areas
to detect and segment the objects and estimate their pose.

1.2 FLIR versus visible

To detect IMOs in FLIR image sequences, the sensor prop-
erties have to be taken into account. We face additional chal-
lenges caused by the following important differences to vi-
sual sequences.

– In FLIR imagery, an object’s edges and corners appear
smoothed out, reducing the number of distinct features
in the image.

– The generation and the maintenance of kinetic energy
usually heat up a moving object (e.g., friction, engine
combustion). Consequently, moving objects often appear
brighter than their environment in FLIR images.

– FLIR images are noisy and have less contrast. More-
over, they often contain artifacts such as dirt on the lens,
brightness which fades out at the end of the scan line,
or local sensor failure at certain pixel locations.

– FLIR sequences are not easily available (especially not
from controlled experiments) and have a lower resolu-
tion. The sequences available to us are 128× 128 pixels
as compared to 512× 512 pixels and more of standard
visual cameras.

– FLIR sequences are often taken under difficult circum-
stances which result in abrupt discontinuities of motion.

These properties must be taken into account when build-
ing a successful system. The sparsity of distinct features and
the noisiness of the data demand more robust techniques than
are currently used for visual sequences.

1.3 Organization

Figure 1 shows a graphical overview of our proposed sys-
tem. In the first module, we enhance the image quality to
overcome problems such as low contrast, artifacts and noise
(Sect. 2). Thereafter, we perform robust multi-scale affine
image registration to eliminate effects from the motion of the
camera platform (Sect. 3). Then, candidate regions for object
parts are obtained by analyzing the residual misalignment.
Using properties of the scene and the sensor, we remove
unlikely regions and identify region pairs that correspond to
the front and rear parts of the object. Together with edge
elements, we obtain a convex cover for the IMOs’ locations
in the image (Sect. 4). Section 5 demonstrates experimen-
tal results and Sect. 6 summarizes the proposed system and
suggests integration into a comprehensive ATR framework.

2 Image enhancement

Because FLIR images are inherently noisy and have less
contrast, we first enhance image quality to facilitate further
processing. In images recorded from a moving platform, ar-
tifacts appear as candidates for IMOs since they do not move
coherently with the scene. To prevent this from leading to
false alarms, the incoming frames are filtered before further

Image Buffer

Image     Enhancement

Delay Delay

Edge
Extraction

Change Detection,
Region Refinement and Selection

No Delay
Robust Image Registration

and Warping

Object Segmentation Pose Estimation

Object #1

FLIR Sensor

Fig. 1. Overview of MODEEP system

processing. Locations with artifacts often have completely
erroneous gray-level values. In the case of salt-and-pepper
noise, order statistic filters provide a model-free solution,
more suitable than non-robust filters. We use a median filter
to successfully remove small artifacts and image noise while
preserving relevant edge information.

FLIR images are based on the thermal electro-magnetic
spectrum. Differences within a scene’s background are rather
small compared to differences between background and ob-
jects. This leads, in general, to a very low contrast in most of
the image area. The second enhancement, histogram equal-
ization, normalizes contrast and compensates for various
base brightness levels. Histogram equalization re-maps gray
levels in an order-preserving fashion such that the cumula-
tive histogram has an approximately linear slope. In the next
section, we will discuss how the effects of camera motion
are removed from the enhanced sequence.

3 Robust multi-scale affine registration

Moving objects induce motion in an image sequence. Since
their image motion is different from the image motion caused
by the camera’s movement, they are referred to as IMOs. In
our case of airborne imagery, the objects are moving on
the ground and appear rather small. Consequently, the back-
ground of the scene will cover most of the image. The dom-
inant motion is a motion that explains most of the apparent
motion. The background in the image undergoes displace-
ment caused by the observer’s movement (or ego-motion)
and, hence, constitutes the dominant motion. IMOs can also
be understood as objects whose motion violates the domi-
nant motion model. In order to detect such objects, we re-
move the effects of the prevailing (dominant) motion from
the sequence. This leaves only the effects of secondary and
smaller motions (the independent motions).
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Due to high noise and frequent large displacements, we
have to use the entire image and cannot rely on a windowed
approach to compensate for motion. Using a 3D motion
model to compensate requires a depth map from the scene.
This depth map can be either given or estimated from the
sequence, if sufficient scene texture and translational ego-
motion are present [Adi85, IA98]. While 3D models have
a small bias (expected model error), they are prone to high
estimation error (variance) due to their high number of de-
grees of freedom (one unknown depth parameter for each
location in the image plus rigid-motion parameters). Consid-
ering FLIR shortcomings and the noise sensitivity of motion
estimation, the 2D affine model with its six degrees of free-
dom provides a good balance for the bias-variance tradeoff.
An estimator is robust if outliers cannot arbitrarily worsen
the estimate. By applying robust statistics [Hub81] to mo-
tion estimation [BA96], the dominant motion estimate can
be made invariant to small model violations such as IMOs
or minor depth discontinuities (parallax). The selection of
the motion model is crucial to the success of compensating
for camera motion.

There are several ways to estimate and compensate for
the dominant observer motion. Feature-based motion estima-
tion [Wu95, BB90, TZ98] seems inappropriate because very
few features are present. Also, these tend to be IMOs and
would thus skew the ego-motion estimates. Abrupt disconti-
nuities in the motion as a result of camera movement make
spatio-temporal filtering approaches [WA94] ineffective, too.
The best method appears to be a registration technique that
uses the entire image and is able to handle large displace-
ments while being robust against the violations in object
motion. Since the moving objects are very small in airborne
images (maximally 10% of the image area), we can assume
that camera motion is the dominant motion in the scene.

Let I t represent the image intensity as a function of the
image locationx = (x1, x2)T at time t andθt−τ the motion
parameter vector describing the visual motion from the frame
at time t − τ to the next (at timet).

xt = Mt−τ (xt−τ , θt−τ ) . (1)

For our system, we use the entire image in a robust multi-
scale affine image registration [BAHH92]. This aligns a
frameI t−τ to a reference frameI t, assuming an affine trans-
formation of the homogeneous coordinates [FvDFH90] as
described in Eq. 2. We always use the most recent frame
available as the reference frame (in contrast to always using
the first frame of a sequence).

M(x, θ) =

(
θ1 θ2 θ3
θ4 θ5 θ6

)
·

x1

x2
1


 . (2)

The 2D affine motion model has six parameters as seen in
Eq. 3.

θ = (θ1 θ2 θ3 θ4 θ5 θ6 )T . (3)

The motion transformationM is estimated in four stages
[BAHH92], as described in the following subsections.

3.1 Pyramid construction

A Laplacian image resolution hierarchy is created to al-
low processing on various spatial frequency levels. In a
Laplacian pyramid, the image is decomposed into one low-
resolution low-pass-filtered image and multiple higher reso-
lution layers encoding the higher frequencies [BA83]. We
start motion estimation at the lowest resolution level of
32 × 32 and expand and refine the results layer by layer
until the original resolution of 128× 128 is reached.

3.2 Motion estimation

Most motion estimation paradigms are based on image inten-
sity conservation. Intensity conservation assumes that during
a sufficiently small timeτ between frames, no intensity pat-
tern in the image is lost. However, it may become displaced
by u1 andu2 in x1 andx2 directions as expressed by Eq. 4,
which was initially proposed by Horn and Schunk in [HS81].

I t−τ (x) = I t(x + ut−τ (x)) . (4)

In each layer of the Laplacian pyramid, motion is estimated.
We use an iterative estimator forθ that minimizes the sum
of squared differences (SSD) between the reference frame
I t and the registered framêI t−τ = M(I t−τ , θ).

θ̂ = min
θ

(SSD(I t, M(I t−τ , θ))) . (5)

The SSD is an error measure between two imagesI and J
based on the intensity conservation assumption [HS81] and
defined as follows:

SSD(I , J) =
∑

x

(I (x) − J(x))2 . (6)

The initial (iterationn = 0) motion guess is ‘no motion’ and,
hence, the motion model is identityM(x, θ̂0) = x, which is
obtained withθ̂0 = ( 1 0 0 0 1 0)T . Using the Gauss-Newton
method to minimize the SSD error with respect to the motion
parametersθ, we obtain an incremental parameter updateδn

as given by Eqs. 7, 8, and 9:

θ̂n+1 = θ̂n + δn , (7)

δn = −
(∑

x

PT(∇I t−τ )(∇I t−τ )TP

)−1

·

·
(∑

x

PT(∇I t−τ )(∆In)

)
,

(8)

P =

(
x1 x2 1 0 0 0
0 0 0x1 x2 1

)
. (9)

The residual error∆In is computed as the pixel-wise differ-
ence between the reference frame and the registered frame
∆In = I t − Î t−τ

n . The image gradient∇I t−τ is approximated
by filtering the image with the Sobel kernel [Sob70] for the
horizontal and vertical direction (Fig. 2).
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Fig. 2. Sobel edge filter. Linear filter kernels forx1- andx2-direction

3.3 Image warping

The current dominant motion estimateθ̂n at iterationn is
used to warp the earlier imageI t−τ to match the reference
image I t. We employ a standard warping technique using
bilinear interpolation. Bilinear interpolation defines the gray
level at an intermediate locations (x1, x2) between actual
pixel values (i, j) as the linear combination of its four nearest
neighbor intensities weighted by their distance.

I (x1, x2) = (1 − x2 + j) · I (x1, j) +

(x2 − j) · I (x1, j + 1) ,

I (x1, j) = (1 − x1 + i) · I (i, j) +

(x1 − i) · I (i + 1, j) ,

I (x1, j + 1) = (1− x1 + i) · I (i, j + 1) +

(x1 − i) · I (i + 1, j + 1) . (10)

The warped imagêI t−τ
n+1 = M(I t−τ , θ̂n+1) is used instead

of the original framêI t−τ
n and the motion estimation process

is repeated at iterationn + 1. Motion estimation and image
warping are iterated with the updated imageÎ t−τ

n+1 and the
reference frameI t. Iteration is terminated upon reaching a
fixpoint for the motion estimate (δn → 0) or a maximum
number of iterations. The selection of the maximum number
of iterations depends on the expected magnitude of inter-
frame motion (typically 3 – 10iterations).

3.4 Refinement

The estimates are refined by expanding the results within
the resolution pyramid in a coarse-to-fine fashion (Fig. 3).
Since a Laplacian resolution hierarchy is used, image width
and height double when stepping down a layer and, conse-
quently, the motion estimation process at the higher reso-
lution level is initialized with 2̂θ. This prevents aliasing of
high-spatial-frequency components that undergo large mo-
tions and minimizes outlier sensitivity. It also speeds up the
motion analysis, since fewer iterations are required at each
resolution level [BAHH92, BAK91].

4 Locating moving objects

4.1 Change detection and region refinement

After the effects of camera motion have been removed,
the remaining regions with significant changes may con-
tain IMOs. To determine which regions exhibit significant

Fig. 3. Illustration of coarse-to-fine motion processing

change, we first compute the difference of the current im-
age (the reference image) to a registered frame from the
past (e.g., 0.2 s ago or 5 frames at 25 frames per sec-
ond). The time difference between the frames must be
long enough for the IMO to move significantly between
them (e.g., its movement is detectable in the image, con-
sidering resolution and target distance). Locations exceed-
ing a certain threshold in absolute difference are considered
outliers to the background motion and constitute our ini-
tial change regions. Depending on whether the difference
is significantly positive or negative, the initial change re-
gions are elements ofI h = bin+(I t − M(I t−τ , θt−τ )) or
I t = bin−(I t −M(I t−τ , θt−τ )), respectively. These are then
processed with morphological operations such as erosion
(each pixel adopts the lowest value in its neighborhood) and
dilation (each pixel adopts the highest value in its neighbor-
hood). Iterative application of opening operations (erosion
followed by dilation) in a 3× 3 neighborhood smoothes the
contours of regions, breaks narrow isthmuses and eliminates
protrusions. The opening operations are repeated until the
image no longer changes. A final dilatation operation grows
the remaining regions.

I t
H = dilate( lim

n→∞(openn(I h)) , (11)

I t
T = dilate( lim

n→∞(openn(I t)) . (12)

The joint set of regionsI r of the two resulting imagesI H
and I T contains the candidate regions for IMO parts.

4.2 Region selection and pose estimation

Some candidate regions may not correspond to a moving
object. For example, heavy noise, artifacts or partial sensor
failure could induce such false-alarm regions. To eliminate
false alarms, we compute four featuressi,1 to si,4 for each
candidate region inI r . The symbolXi denotes the set of
points in a particular regioni. Ther-th (central) momentum
of Xi is denotedm(0)

r (m(1)
r ).

m(c)
r = E

[
(Xi − c · E[Xi])

r
]

, (13)

si,1 = m(0)
1 = mean, (14)

si,2 = m(1)
2 = variance, (15)

si,3 =
m(1)

3√
m(1)

2

3

= skewness, (16)
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si,4 =
m(1)

4√
m(1)

2

4

= kurtosis. (17)

Based on these features, we decide if a region will be
processed further or rejected as a false alarm. Due to the
severely deteriorated image quality at the right and lower
borders (end of scan line), we want to reject regions centered
very close to any image margin. Moreover, size, symmetry
and compactness can be used to exclude other false alarms.
All of these properties are captured by the four region fea-
tures. We use them in a Bayesian approach [DH73] to make
a decisionκi regarding the selection or rejection of a can-
didate regioni based on its likelihood of being caused by a
moving object.

The a posterioriprobability that the regioni is part of a
target, given its feature vectorsi, is denotedP (T1|si). Thea
posteriori probabilitiesP (Tk|si) are computed using Bayes’
rule and the law of total probability as shown in Eq. 18.

P (Tk|si) =
p(si|Tk) · P (Tk)∑
h p(si|Th) · P (Th)

. (18)

The probability densitiesp(si|Tk) are assumed to be multi-
variate (e.g., 4D) Gaussian densities:

p(si|Tk) =

√
|Σ−1

k |
(2π)2

exp

(
−1

2
(si − µk)TΣ−1

k (si − µk)

)
.

(19)

Their parametersµk and Σk are computed as maximum-
likelihood (ML) estimates [DH73] from dedicated training
examples. Within a comprehensive ATR system, we plan
to use a static detector to provide labeled examples for the
training. Thea priori probabilitiesP (Tk) are also obtained
from the training data as the relative frequencies of false
alarms and targets.

κi =


accept if

arg maxk(P (Tk|si)) = 1 and
P (T1|si) > β

reject else
(20)

For each region, we decide if the region corresponds to an
object (accept) or a false alarm (reject). The decisionκi

is made according to the decision rule (Eq. 20) based on
the a posteriori probabilities and the confidence threshold
β (e.g., 90%). If false alarms are to be avoided,β should
be increased. Conversely, if missed detections have a high
cost, β should be decreased. The appropriate value forβ
depends on the cost of a false alarm compared to a missed
detection. All regions not meeting the minimum confidence
requirementβ are unlikely to be moving objects. Hence,
these are rejected and removed for further processing. The
remaining regions are the final IMO part regions. Through
the growing process they include the adjacent boundaries of
the corresponding objects.

We call the foremost part of the IMO in the direction of
its movement the front part, and the opposite end its back.
Since the sequences are recorded from airborne sensors, we
are significantly above the plane on which the targets move.
This assures that the front and back parts of regular vehicles
cannot be hidden due to self-occlusion. One key property of
infrared sensors is that targets or their parts (especially their
hot spotssuch as the engine and the exhaust) appear brighter

than the background. We can distinguish four cases of ob-
ject motion and their resulting FLIR inter-frame intensity
changes:

object is in front of object behind object

appearing becomes brighter not observable
moving visible becomes brighter becomes darker
disappearing not observable becomes darker
moving occluded not observable not observable

We call IMO regions heads (tails) if intensity increased
(decreased) significantly from the registered to the reference
frame. Heads are likely to contain an object’s front, and
tails usually indicate regions that an object’s back has just
vacated. Head and tail regions indicate the location of an
object as well as its pose relative to the observer.

In case of multiple moving objects, we must find pairs
of final regions corresponding to thesamemoving object.
This also helps eliminate misdetected regions (false alarms),
since it is very unlikely that there is a matching opposite
region to form a valid pair. We cluster the detected regions
into pairs consisting of a head and a tail region. To establish
pairs, we assume that the distance from one object’s front to
its tail is smaller than from any of its parts to the contrary
part of any another object. All possible pairs (combinations
of a headXi from I H and a tailXj from I T) are considered
and ranked by the distance measurepi,j :

pi,j = |si,1 − sj,1| . (21)

Starting from the closest match (lowest ranking), we now
successively assign two regions to one pair. Since each re-
gion can be in only one pair, this accomplishes the desired
clustering. Excess head or tail regions (false alarms) remain
unpaired and are dropped at this stage. Equation 22 gives a
more formal description of the clustering procedure:

λi,j =


accept if

pi,j < pk,j ∀k /= i and
pi,j < pi,l ∀l /= j

reject else
. (22)

The decisionλi,j indicates if the pair formed by head region
Xi and tailXj is considered a valid final IMO pair.

Let us assume that a matching pair of a head and tail re-
gion has been found. We can approximate the object’s pose
in the image by the angleα′ of the straight line from the
centroid of the object’s headsi,1 to the centroid of the tail
sj,1. In our notation,α′ = 0 andα′ = 90 represent the direc-
tions straight up and straight to the right, respectively. For
the typical airborne surveillance application, let us assume
an elevated camera with a large focal distance (f = ∞ or
parallel projection) looking forward at an object on a planar
surface as depicted in Fig. 4. This scene geometry can be
used to link the image poseα′ to the true object poseα. The
true poseα is defined here as the direction of the vehicle’s
heading on the ground plane in respect to the observer:

tan(α) = tan(α′) · sin(γ) , (23)

distance· tan(γ) = altitude. (24)

These equations can be rewritten to obtain a universal
closed-form solution forα using the function atan, which
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Fig. 4. Scene geometry for planar surface and elevated observer
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is a generalized arctan function that computes an angle from
a vertical and a horizontal component. Approximate knowl-
edge of the camera’s elevation above the ground plane (alti-
tude) and its distance to the object on the ground allows us
to computeα as follows:

α = atan(sin(α′) · sin(atan(altitude, distance)), cos(α′)) . (25)

Figure 5 shows a contour plot of the true object pose as
a function of the distance-to-altitude ratio and the projected
object pose in degrees. The true pose anglesα = 0, α = 90,
α = 180, α = −90 correspond to the vehicle pointing out-
bound, to the right, inbound, and to the left with respect to
the observer. For distance/altitude = 0, the observer is ex-
actly above the object and, hence, perceives the true pose
(α′ = α). With increasing distance at constant altitude, the
motion component in z-direction becomes less visible. In the
limit, only strict left (−90 degrees) and right (90 degrees)
movement can be perceived. This graph also shows that in
high distance/altitude scenarios, small image pose estima-
tion errors around 90 and−90 degrees result in large true
pose estimation errors. From a long distance, it is hard to
visually estimate if an object is moving in- or outbound.

4.3 Edge extraction and segmentation

As we have just seen, the IMO regions indicate the front
or rear part of the moving object. However, not all parts
of the object are included into these two sets of regions.
Motion of homogeneously intense areas, for example, can-
not be observed. How can we find the entire object from the
IMO part pairs? We have to resort to another feature domain,
since pure motion information is not sufficient to solve this
problem. Gray-level edges in the image can provide an in-
dication of an object’s boundaries. Independently from the
motion detection, we extract the edges from the reference
frame using the Canny operator [Can86] and the Sobel ap-
proximation of the derivative [Sob70]. This can be done in
parallel with the change detection. At this point we assume
that the objects project to convex regions in the image with
(eventually only partially) visible object boundaries in the
direction of motion. Even though the convexity assumption
may not hold for all objects, its violation leads to the de-
tection of the convex part, which is usually sufficient. Since
the IMO regions were grown, they now include the object
boundaries. The edge in the head region corresponds to the
IMO’s front end, and the edge in the tail region to the rear
end. Consequently, locations fulfilling both constraints, ly-
ing within an IMO region and classified as an edge location,
are the boundary locations of the object. Using the convex-
ity assumption, the convex cover of the boundary regions
constitutes the desired ROI containing the IMO.

5 Results

5.1 Tank-and-truck (TAT) sequence

Figure 6 shows two FLIR frames (top row) and detected
IMOs (bottom row) and Fig. 7 depicts a spatio-temporal
view of the entire sequence. During frames 1 to 30, a truck
(the IMO) approaches the tank that sits in the center of
the image. The elevated camera gradually comes closer.
At frame 34, the camera was struck, resulting in an abrupt
spatio-temporal discontinuity of the data. The camera fixates
back at frame 38, but until the last frame 79, the sequence is
unstable, with large inter-frame displacements. During this
interval, the truck stops briefly and changes direction, driving
toward the observer. The sequence demonstrates a mixture
of continuous translational and abrupt, unsteady rotational
camera motion.

Figure 8 illustrates the success of the frame-wise reg-
istration to stabilize the sequence. Various spatio-temporal
slices through the entire sequence are shown before and af-
ter stabilization. In each slice the time progresses towards
the right, and the upright axis is the free spatial axis. The
stabilization removed the small and short-term effects of the
wobbling camera (the jagged lines in Fig. 8a become smooth
in b), as well as the continuous effect of the camera coming
closer (the diverging lines in Fig. 8a become parallel in b).
It is interesting to note the merging of the bright traces of
the sitting tank and the moving truck in Fig. 8c and d. In
Fig. 8a and b, the IMO ‘enters’ the vertical slice late in the
sequence and appears as the lower chip of the bright trace.
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(a) (b)

Fig. 6a,b. Detection and pose estimation results obtained with our system.
TAT FLIR frames 15a and 72b original (top row) and the final object
part pairs with pose arrows (middle row). The bottom rowshows the cor-
responding ROIs

Fig. 7. Spatio-temporal view of the TAT sequence. The data volume’s slices
at t = 1, t = 79, x = 60, andy = 60 are shown

The middle row of Fig. 6 shows the detected head (black)
and regions behind the object’s tail (gray). The objects’ esti-
mated direction of movementα′ is indicated by the arrows.
The final object segmentation obtained from edge and mo-
tion information is shown in the bottom row of Fig. 6. In
frames 15 and 72, the IMO is located accurately and suc-
cessfully segmented from the stationary components of the
scene. While our system reliably detects the IMO for most
frames in the sequence, it fails in frame 34 when the camera

(a) (b)

(c) (d)

Fig. 8a–d. Effectiveness of ego-motion compensation. Vertical slices at
x = 60 (upper row) and horizontal slices aty = 60 (lower row) before (left
column) and after stabilization (right column) of TAT sequence

is struck heavily. This induces an abrupt and large displace-
ment of the entire scene that cannot be compensated with
the registration module. Consequently, many scene features
appear as candidate parts and no objects are detected.

Figure 9 shows several intermediate processing results
for frame 15. In Fig. 9a, the original pixel-wise difference
of the current reference frame 15 and the previous frame 8
is shown. The difference depicted ranges from black (strong
decrease) over gray (no change) to white (strong increase).
After multi-scale registration, the observer motion is re-
moved and the errors in the difference image (Fig. 9b) are
due to IMOs. The initial regions for IMO parts (Fig. 9c)
are refined through morphological operations to obtain the
candidate IMO part regions (Fig. 9e). Candidate regions are
selected (which in this case removes the false alarm regions
at the margin) and paired. Edges (Fig. 9d) within valid pair
regions constitute the IMO boundaries as shown in Fig. 9f.
From an overall perspective we obtain excellent results, es-
pecially when considering the quality of the FLIR sequence.
The vehicle is detected and segmented successfully and ac-
curately during 47 of 72 frames of the TAT sequence (79
total at 7 frames corresponding toτ ). Figure 10 shows the
obtained pose estimates basedonly on image motion. The
estimated pose changes from approximately−85 to −175
degrees. This correctly represents the trucks’ left turning ac-
tion.

5.2 Other illustrative examples

Results for three other complex and difficult sequences are
shown in Fig. 11. The top row shows the reference FLIR
frame. The difference to the previous frame before registra-
tion is depicted in the second row to illustrate overall motion
effects. The third row illustrates the residual differences af-
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(a) (b)

(c) (d)

(e) (f)

Fig. 9a–f. Steps in the processing at TAT frame 15.a Original difference
of frames 8 and 15.b After affine multi-scale registration.c Initial IMO
parts.d Edge map.e Candidate IMO parts.f Final IMO boundary parts

ter dominant motion compensation. In the bottom row, the
candidate parts are shown. Final part pairs are overlaid with
a pose indication arrow.

The left column of Fig. 11a shows a frame from a se-
quence containing two sitting tanks and no moving objects.
Despite the large depth variations, motion compensation is
successful and no false alarms are induced.

The sequence in the middle column (Fig. 11b) shows
a tank moving across an unobstructed field towards the
observer. The system successfully detects the heated right
wheels and gives a good estimate of the tank pose. It can
also be seen that the hot exhaust fumes induce a false alarm
by appearing to be a head part. However, the fumes do not
follow rigid motion. A heat edge appears on the fumes’
front, but, due to the gradual dilution and cooling, no corre-
sponding tail exists. Consequently, the falsely detected head
remains unpaired and is rejected.

The frame shown on the right (Fig. 11c) contains two
moving objects in a highly cluttered scene (road and trees), a
tank moving rapidly to the right and another object moving
towards the upper left of the image. Static ATR systems
and even human observers may have difficulties detecting
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Fig. 10. Pose development during turning action of truck

the targets in this image. Our dynamic system successfully
detects both objects’ head and tail and recovers their poses.
A false-alarm tail in the upper right corner is also detected
at first, but is rejected later, since it cannot be paired.

5.3 Evaluation model

From the user’s perspective, an object detection system has
two modes of failure, namely false alarm and missed de-
tection. To provide an objective basis for an evaluation and
comparison of different object detection systems, we have
to measure the true number of objects|T |, the number of
detected objects|D|, and the number of correctly detected
objects|C| ≤ min(|T |, |D|) for each frame. Consequently,
the number of missed detections is|T | − |C| and the num-
ber of false alarms is|D| − |C|. A relative indication of the
system’s correctness for a single frame is then given by

η =

{ |C|
|T |+|D|−|C| if |C| /= 0 or |D| /= 0 ,

1 else.
(26)

Furthermore, we define the missed detection rate as

ε1 =

{ |T |−|C|
|T |+|D|−|C| if |C| /= 0 or |D| /= 0 ,

0 else,
(27)

and the false alarm rate as

ε2 =

{ |D|−|C|
|T |+|D|−|C| if |C| /= 0 or |D| /= 0 ,

0 else.
(28)

These are conservative performance estimators, with 0≤
η, ε1, ε2 ≤ 1 andη + ε1 + ε2 = 1. We tested our framework
on four real sequences with 1183 frames. Cumulative abso-
lute and average relative performance metrics are given in
Table 1. The expressiveness of the performance metrics is
limited due to the strong variation in sequence quality and
clutter. Please note that the given rates are per single frame.
Assuming stochastic independence of frames, given a detec-
tion probability of 0.40, the target is detected in at least one
of ten consecutive frames with probability 0.99. Consider-
ing that only motion information is used and targets often
are not larger than ten pixels, we obtain excellent detection
results.
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0 IMOs 1 IMO 2 IMOs

(a) (b) (c)

Fig. 11a–c.More results on complex and dif-
ficult sequences. Reference frames (top row),
differences before (second row), after align-
ment (third row), and candidate parts with su-
perimposed pose estimates for final pairs (bot-
tom row)

Table 1. MODEEP performance metrics

targets frames Σ|T | Σ|D| Σ|C| η̄ ε̄1 ε̄2

0 165 0 25 0 92% 0% 8%

1 507 507 691 327 56% 37% 7%

2 511 1022 1231 711 49% 42% 9%

total 1183 1529 1947 1038 58% 34% 8%

6 Conclusion and future work

In this paper we propose MODEEP, a novel motion-based
object detection system for FLIR sequences. Motion is a
very strong cue, especially in highly cluttered environments,
that has not been considered sufficiently in previous work.
The shortcomings of the sensor and requirements for real-
time processing induce the need for a fast and robust system.

Our detection system adapts well-known robust techniques
from the visible to the FLIR domain. An iterative approach,
used for the most time-costly operation, image registration,
assures a scalable algorithm complexity. We propose a new
methodology to link the new dynamic information and static
cues, such as object pose, enabling the construction of more
redundant and fault-tolerant systems. Our algorithm has been
implemented, and results on difficult, real sequences are pre-
sented.

In future work, we want to integrate the presented dy-
namic scene analysis system with existing static image ATR
systems (such as [NA96]) into a comprehensive system
(Fig. 12). The shaded box highlights the parts of the sys-
tem described in this paper. Together with cues from other
modules, it can be used in a Bayesian sensor fusion paradigm
to improve detection accuracy and reduce false alarms. In
such a fusion stage detection, recognition and pose results
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Fig. 12. Integration of MODEEP (shaded) into a future target detection and
recognition system

from various cues such as motion, target shape, size or parts
can be integrated using a Bayesian meta-classifier. The dif-
ferent paradigms can be used to mutually verify their results
and synergetically improve performance. Compared to ex-
isting systems, dynamic scene analysis enables the inclusion
of target action recognition. This action recognition enables
multi-frame descriptions such as object ‘starts’ and ‘stops’
and ‘changes in acceleration’ and ‘changes in direction’ to be
extracted automatically. Target action knowledge provides a
high-level abstraction based on motion analysis that has great
potential to extend and enhance existing systems.

References

[Adi85] Adiv G (1985) Determining three-dimensional motion and struc-
ture from optical flow generated by several moving objects. IEEE Trans
Pattern Anal Mach Intell 7(4): 384–400

[AN89] Aggarwal JK, Nandhakumar N (1989) On the computation of mo-
tion from sequences of images: A review. Proc IEEE 76: 917–935

[BA83] Burt P, Adelson EH (1983) The Laplacian pyramid as a compact
image code. IEEE Trans Commun 31(4): 532–540

[BA96] Black MJ, Anandan P (1996) The robust estimation of multiple
motions: Parametric and piecewise-smooth flow fields. Comput Vision
Image Understanding 63(1): 75–104

[BAHH92] Bergen JR, Anandan P, Hanna KJ, Hingorani R (1992) Hierar-
chical model-based motion estimation. In: Sandini G (ed) Proceedings
European Conference on Computer Vision (LNCS 588), 1992, Berlin,
Germany. Springer, Berlin Heidelberg New York, pp 237–252

[BAK91] Battiti R, Amaldi E, Koch C (1991) Computing optical flow
across multiple scales: an adaptive coarse- to-fine strategy. Int J Com-
put Vision 6(2): 133–145

[BB90] Burger W, Bhanu B (1990) Estimating 3-D egomotion from per-
spective image sequences. IEEE Trans Pattern Anal Mach Intell 12(11):
1040–1058

[BDZ+97] Bhanu B, Dudgeon DE, Zelnio EG, Rosenfeld A, Casasent D,
Reed IS (1997) Introduction to the special issue on automatic target
detection and recognition. IEEE Trans Image Process 6(1): 1–6

[Can86] Canny J (1986) A computational approach to edge detection. IEEE
Trans Pattern Anal Mach Intell 8(6): 679– 698

[DH73] Duda RO, Hart PE (1973) Pattern classification and scene analysis.
Wiley, New York, N.Y.

[FvDFH90] Foley JD, Dam A van, Feiner SK, Hughes JF (1990) Computer
graphics: Principles and practice. Addison- Wesley, Reading, Mass.

[HS81] Horn BKP, Schunk BG (1981) Determining optical flow. Artif
Intell 17: 185–203

[Hub81] Huber PJ (1981) Robust statistics. Wiley, New York, N.Y.
[IA98] Irani M, Anandan P (1998) A unified approach to moving-object

detection in 2D and 3D scenes. IEEE Trans Pattern Anal Mach Intell
20(6): 577–589

[MDD+95] Morimoto CH, Dementhon D, Davis LS, Chellappa R, Nel-
son R (1995) Detection of independently moving objects in passive
video. In: Masaky I (ed) Proceedings of Intelligent Vehicles Work-
shop, September 1995, Detroit, Mich. IEEE, pp 270–275

[NA92] Nandhakumar N, Aggarwal JK (1992) Multisensory computer vi-
sion. Adv Comput 60: 34

[NA96] Nair D, Aggarwal JK (1996) A focused target segmentation
paradigm. In: Cipolla R, Buxton B (eds) Fourth European Conference
on Computer Vision, April 1996, Cambridge, UK. Springer, Berlin
Heidelberg New York, pp 579–588

[RCM+95] Rogers SK, Colombi JM, Martin CE, Gainey JC, Fielding KH,
Burns TJ, Ruck DW, Kabrisky M, Oxley M (1995) Neural networks
for automatic target recognition. Neural Networks 8(7/8): 1153–1184

[RWBG97] Ratches JA, Walters CP, Buser RG, Guenther BD (1997) Aided
and automatic target recognition based upon sensory inputs from image
forming systems. IEEE Trans Pattern Anal Mach Intell 19(9): 1004–
1019

[Sob70] Sobel IE (1970) Camera models and machine perception. Ph.D.
thesis. Stanford University, Stanford, CA

[TZ98] Torr PHS, Zisserman A (1998) Concerning Bayesian motion seg-
mentation, model averaging, matching and the trifocal tensor. In:
Burkhardt H, Neumann B (eds) Fifth European Conference on Com-
puter Vision, June 1998, Freiburg, Germany. Springer, Berlin Heidel-
berg New York, pp 511–527

[WA94] Wang JYA, Adelson EH (1994) Spatio- temporal segmentation of
video data. Proc SPIE (Image and Video Processing II) 2182: 120–131

[Wan95] Wandell BA (1995) Foundations of vision. Sinauer Associates,
Sunderland, MA

[Wu95] Wu QX (1995) A correlation-relaxation- labeling framework for
computing optical flow- template matching from a new perspective.
IEEE Trans Pattern Anal Mach Intell 17(9): 843–853

Alexander Strehl received his Vor-
diplom in computer science from the
Friedrich-Alexander-Universität Erlan-
gen-N̈urnberg, Germany, in 1996 and the
M.Sc.Eng. degree in electrical and com-
puter engineering from The University
of Texas at Austin in 1998. During his
studies he worked as a research assistant
for the Fraunhofer Gesellschaft and as a
management consultant for McKinsey &
Company, Inc. He is presently working
towards the Ph.D. degree at The Univer-
sity of Texas at Austin. Alexander Strehl
is a member of IEEE and Phi Kappa Phi.
His research interests include computer

vision, video processing, large scale data mining, collaborative filtering,
clustering, permission marketing, and e-commerce.

J. K. Aggarwal has served on the fac-
ulty of The University of Texas at Austin
College of Engineering since 1964 and
is currently the Cullen Professor of Elec-
trical and Computer Engineering and Di-
rector of the Computer and Vision Re-
search Center. His research interests in-
clude computer vision and and pattern
recognition. A Fellow of IEEE since
1976 and IAPR since 1998, he received
the Senior Research Award of the Amer-
ican Society of Engineering Education in
1992, and the 1996 Technical Achieve-
ment Award of the IEEE Computer So-

ciety. He is author or editor of 7 books and 38 book chapters; author
of over 175 journal papers, as well as numerous proceedings papers and
technical reports. He has served as Chairman of the IEEE Computer So-
ciety Technical Committee on Pattern Analysis and Machine Intelligence
(1987–1989); Director of the NATO Advanced Research Workshop on Mul-
tisensor Fusion for Computer Vision, Grenoble, France (1989); Chairman
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (1993), and President of the International Association for Pat-
tern Recognition (1992-94). He currently serves as IEEE Computer Society
representative to the IAPR.


