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This dissertation takes a relationship-based approach to cluster analysis

of high (1000 and more) dimensional data that side-steps the ‘curse of dimen-

sionality’ issue by working in a suitable similarity space instead of the original

feature space. We propose two frameworks that leverage graph algorithms

to achieve relationship-based clustering and visualization, respectively. In the

visualization framework, the output from the clustering algorithm is used to re-

order the data points so that the resulting permuted similarity matrix can be

readily visualized in 2 dimensions, with clusters showing up as bands. Results

on retail transaction, document (bag-of-words), and web-log data show that

our approach can yield superior results while also taking additional balance

constraints into account.

vii



The choice of similarity is a critical step in relationship-based clustering

and this motivates our systematic comparative study of the impact of simi-

larity measures on the quality of document clusters. The key findings of our

experimental study are: (i) Cosine, correlation, and extended Jaccard simi-

larities perform comparably; (ii) Euclidean distances do not work well; (iii)

graph partitioning tends to be superior to k-means and SOMs especially when

balanced clusters are desired; and (iv) performance curves generally do not

cross. We also propose a cluster quality evaluation measure based on nor-

malized mutual information and find an analytical relation between similarity

measures.

It is widely recognized that combining multiple classification or regres-

sion models typically provides superior results compared to using a single,

well-tuned model. However, there are no well known approaches to combining

multiple clusterings. The idea of combining cluster labelings without accessing

the original features leads to a general knowledge reuse framework that we call

cluster ensembles. We propose a formal definition of the cluster ensemble as

an optimization problem. Taking a relationship-based approach we propose

three effective and efficient combining algorithms for solving it heuristically

based on a hypergraph model. Results on synthetic as well as real data-sets

show that cluster ensembles can (i) improve quality and robustness, and (ii)

enable distributed clustering, and (iii) speed up processing significantly with

little loss in quality.
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Chapter 1

Introduction

This morning I declined to write a popular article about the

question “Can machines think?” I told the editor that I

thought the question as ill-posed and uninteresting as

the question “Can submarines swim?”

– Edsger W. Dijkstra1

1.1 Cluster Analysis

The ability to form meaningful groups of objects is one of the most fundamental

modes of intelligence. Humans perform this task with remarkable ease. In

early childhood one learns to distinguish, for example, between cats and dogs

or apples and oranges. However, enabling the computer to do this task of

grouping automatically is a difficult and often ill-posed problem.

Cluster analysis is a tool for exploring the structure of data. The core

of cluster analysis is clustering, the process of grouping objects into clusters

1In The Fruits of Misunderstanding, EWD 854, May 1983
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such that objects from the same cluster are similar and objects from differ-

ent clusters are dissimilar. Objects can be described in terms of measurements

(e.g., attributes, features) or by relationships with other objects (e.g., pairwise

distance, similarity). Unlike classification, clustering does not require assump-

tions about category labels that tag objects with prior identifiers. Therefore,

clustering is an unsupervised learning technique versus classification, which

belongs to supervised learning.

The need to structure and learn from the vigorously growing amounts

of data has been a driving force for making clustering a highly active research

area. Humans are not able to easily discover knowledge from the glut of

information in databases without the use of summarization techniques. Basic

statistics (such as mean, variance) or histograms can provide an initial feel for

the data. However, more intricate relationships among the objects, among the

features, and between both can be discovered through cluster analysis.

Clustering is used in many areas, including artificial intelligence, biol-

ogy, customer relationship management, data compression, data mining, in-

formation retrieval, image processing, machine learning, marketing, medicine,

pattern recognition, psychology, recommender systems and statistics. In bi-

ology, clustering is used, for example, to automatically build a taxonomy of

species based on their features. Currently, there is considerable interest in es-

timation of phylogenetic trees from gene sequence data. Another application

of clustering is to better understand gene functions in the biological processes

in a cell. A key step in the analysis of gene expression data is the detection

of groups of genes that manifest similar expression patterns. Another growing

application area is customer relationship management, where data collected

from multiple touch-points (e.g., web surfing, cash register transactions, call

2



center activities) has become readily available. This data contains valuable

knowledge of customer behavior that can help optimize marketing, bundling,

and pricing strategies. Due to the massive amounts and great detail of data,

extracting such knowledge is hard, and often even obvious insights are over-

looked. Clustering is critical in the mining process because it can summarize

data to a manageable level by forming, for example, groups of customers with

similar profiles.

Approaches to clustering differ in a variety of aspects. Clustering algo-

rithms can proceed divisively (top-down) or agglomeratively (bottom-up). In

top-down processing, one starts with the objects as one group and splits it

into clusters. Conversely, in agglomerative algorithms, each object starts as a

singleton cluster and clusters are merged successively. Depending on the result

of clustering, one can distinguish between hierarchical (multi-layer) and flat

(single-layer) techniques. Hierarchical algorithms output a rooted tree struc-

ture that can be represented as a dendrogram. Within hierarchical clustering,

techniques can be distinguished into those generating binary trees and those

generating arbitrary trees. In the case of flat clustering, hard clustering in-

duces a partitioning into non-overlapping groups. In contrast to this Boolean

membership relation, a soft clustering gives the probabilities for each object

being a member of a cluster. Based on the goals of clustering, it can be for-

malized as an optimization problem by itself (e.g., minimizing squared error)

or in the context of an application (facilitating for further activities such as

predictive modeling or browsing).

Clustering has been widely studied in several disciplines, especially since

the early 1960’s. A variety of classic [Fuk72, Eve74, Har75, Mur85, JD88] and

recent books [KR90, HK00, DHS01] give great introductions to approaches

3



and algorithms in cluster analysis.

The rest of this chapter is organized as follows. The next section in-

troduces some basic notational conventions for this dissertation. Section 1.3

introduces our basic approach to clustering and the components involved. Sec-

tion 1.4 elaborates on the motivations for this dissertation. In section 1.5, a

brief summarization of the contributions is given. Section 1.6 contains the

organization of the rest of this dissertation.

1.2 Notation

As the context and convention permits, small Roman and Greek letters are

used for scalars, small Roman boldface letters for vectors, capital Roman bold-

face for matrices, and capital Greek for functions. Letters early in the alphabet

tend to indicate constants and letters towards the end indicate variables. Cap-

ital caligraphs indicate sets and | • | their cardinality. ‖ • ‖ is the L2 norm

and bracketed super-scripts are indices rather than the power function. The

letters K, N , D are in general scalars and refer to particular versions of k, n,

d, respectively. I denotes the identity matrix, 0 and 1 are the vector / matrix

equivalents to 0 and 1. O(•) is the Landau symbol. For a d×n matrix X, xi,j

refers to the element at the i-th row and j-th column and xj (x†i) is the j-th

d× 1 column (n× 1 row) vector of X. X† denotes the transpose of X. The set

of real numbers is R, the set of non-negative (strictly positive) real numbers

is R+ (R++).
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1.3 Relationship-based Clustering Approach

The pattern recognition process from raw data to knowledge is characterized

by a large reduction of description length by multiple orders of magnitude.

A step-wise approach that includes several distinct levels of abstraction is

generally adopted. A common framework can be observed for most systems

as the input is transformed through the following spaces2:

Input space I. Clustering is based on observations about the objects under

consideration. The input space captures all the known raw information

about the object, such as a customer’s purchase history, a hypertext

document, a grid of gray-level values for a visual image, or a sequence

of DNA. Let N denote the number of objects in the input space, and

let a particular object have D associated attributes. The number of

attributes can vary by object. For example, objects can be characterized

by variable length sequences.

Feature space F . The transformation Υ : I → F removes some redundancy

by feature selection or extraction. In feature selection, a subset of the

input dimensions that is highly relevant to the learning problem is se-

lected. In document clustering, for example, a variety of word selection

and weighting schemes have been proposed [YP97, Kol97]. A feature ex-

traction transformation may extract the locations of edge elements from

a gray-level image. Other popular transformations include the Fourier

transformation for speech processing and the Singular Value Decompo-

sition (SVD) for multivariate statistical data. Features (or attributes)

2A similar overview on spaces in classification problems can be found e.g. in [Kum00]
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may be distinguished by the type and number of values they can take:

We distinguish binary (Boolean true / false decision, such as married),

nominal (finite number of categorical labels with no inherent order, such

as color), ordinal (mappable to the cardinal numbers with a smallest

element and an ordering relation, such as rank), continuous (real valued

measurements such as latitude), and combinations thereof. The trans-

formation to feature space may render some objects unusable, due to

missing data or non-compliance with input constraints. Thus, we denote

the corresponding number of objects as n (n ≤ N) and the number of

dimensions by d (d ≤ D).

Similarity space S is an optional intermediate space between the feature

space F and the output space O. The similarity transformation Ψ :

F × F → S translates a pair of internal, object-centered descriptions in

terms of features into an external, relationship-oriented space S. While

there are n d-dimensional descriptions (e.g., d×n matrix X ∈ Fn) there

are (n−1)n/2 pairwise relations (e.g., symmetric n×n matrix S ∈ Sn×n).

In our work, we mainly use similarities s(xa,xb) because they induce

mathematically convenient and efficient sparse matrix constructs. In-

stead of minimizing the cost, we maximize accumulated similarity. The

dual notions of distance and similarity can be interchanged. However,

their conversion has to be done carefully in order to preserve critical

properties as will be discussed later. Similarities s ∈ [0, 1] ⊂ R and

distances d ∈ [0,∞) ⊂ R can be related in various non-linear, monoton-

ically decreasing ways.

Output space O. In partitioning, the output space is a vector of nominal
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attributes providing cluster membership to one of k clusters. To repre-

sent a clustering, we denote it either as a set of clusters {Cℓ}k
ℓ=1 or as a

n-dimensional label vector λ, where xj ∈ Cℓ ⇔ λj = ℓ. Many approaches

to the output transformation Φ : Fn → On (or Φ : Sn×n → On), the

actual clustering algorithm, have been investigated. The next chapter

will give an overview.

Hypothesis space H is the space where a particular clustering algorithm

searches for a solution. H depends on the language bias of the clustering

algorithm. A given algorithm can be viewed as looking for an optimal

solution (at maximum objective or minimum cost as given by the eval-

uation function) according to its search bias. An evaluation function

φ : H → R+ can work purely based on the feature and/or similarity

space, but can also incorporate external knowledge (such as user given

categorizations).

Let us look at the output space in a little more detail. In this work, we focus

on flat clusterings (partitions) for a variety of reasons. Any hierarchical clus-

tering can be conducted as a series of flat clusterings, rendering flat clustering

the more fundamental step. Hierarchical complete v-ary trees of depth τ can

be encoded without loss of information as a single ordered flat labeling with

k = vτ clusters. To obtain the clustering on layer ρ ∈ {0, . . . , τ}, each of the vρ

disjoint intervals of labels (with length vτ−ρ starting at label 1) have to be col-

lapsed to a single label (considered one cluster). (consider e.g., v = 2, τ = 3, so

the labels are structured in a tree as follows: {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}})
Consequently, a flat labeling with implicit ordering information is just as ex-

pressive as full hierarchical cluster trees. But let us return to labelings without

7



ordering information.

Figure 1.1 illustrates all clusterings for less than 6 objects and clusters.

For example, there are 90 partitionings of 6 objects into 3 groups. In general,

for a flat clustering of n objects into k partitions there are

1

k!

k
∑

ℓ=1





k

ℓ



 (−1)k−ℓℓn (1.1)

possible partitionings, or approximately kn/k! for n ≫ k. Clearly, the expo-

nentially growing search space makes an exhaustive, global search prohibitive.

In general, clustering problems have difficult, non-convex, objective functions

modeling the similarity within clusters and the dissimilarity between clusters.

In general, the clustering problem is NP-hard [HJ97].

In this dissertation, the focus is on the similarity space. Most standard

algorithms spend little attention on the similarity space. Rather, similarity

computations are directly integrated into the clustering algorithms which pro-

ceeds straight from feature space to the output space. The introduction of

an independent modular similarity space has many advantages, as it allows

us to address many of the challenges discussed in the next section. We call

this approach similarity-based or relationship-based or graph-based. Figure

1.2 contrasts the object-centered with the relationship-based approach. The

key difference between relationship-based clustering and regular clustering is

the focus on the similarity space S instead of working directly in the feature

domain F . In figure 1.3 an abstract overview of the general relationship-based

framework is shown. In web-page clustering, for example, X is a collection of n

web-pages. Extracting features yields X, for example, the term frequencies of

stemmed words, normalized such that ∀x‖x‖2 = 1. Similarities are computed,

using e.g., cosine based similarity Ψ yielding the n × n similarity matrix S.

8



Figure 1.1: All possible clusterings of up to n = 6 objects (rows top to bottom)
into up to k = 6 groups (columns left to right). In each table cell a matrix
shows all clusterings for a particular choice of n and k. A matrix shows
one clustering per row. The color in the j-th column indicates the group
membership of the j-th object. Group association is shown in red, blue, green,
black, and gray.
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Figure 1.2: Object-centered (top) versus relationship-based clustering (bot-
tom). The focus in this dissertation is on relationship-based clustering which
is independent of the feature space.
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Figure 1.3: Abstract overview of the general relationship-based, single-layer,
single-learner, batch clustering process from a set of raw object descriptions

X to the vector of cluster labels λ: (X ∈ In)
Υ→ (X ∈ Fn ⊂ R

d×n)
Ψ→ (S ∈

Sn×n = [0, 1]n×n ⊂ R
n×n)

Φ→ (λ ∈ On = {1, . . . , k}n)
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Finally, λ is computed using e.g., graph partitioning.

1.4 Current Challenges in Clustering

Many traditional clustering techniques [Har75, Nie81, JD88] do not perform

satisfactorily in data mining scenarios due to a variety of reasons. These

reasons can be divided into those arising from the data distribution and those

caused by application constraints:

• Data Distribution

Large number of samples. The number of samples to be processed is

very high. Algorithms have to be very conscious of scaling issues.

Like many interesting problems, clustering in general is NP-hard,

and practical and successful data mining algorithms usually scale

linear or log-linear. Quadratic and cubic scaling may also be allow-

able but a linear behavior is highly desirable.

High dimensionality. The number of features is very high and may

even exceed the number of samples. So one has to face the curse of

dimensionality [Fri94].

Sparsity. Most features are zero for most samples, i.e. the object-feature

matrix is sparse. This property strongly affects the measurements

of similarity and the computational complexity.

Strong non-Gaussian distribution of feature values. The data is

so skewed that it can not be safely modeled by normal distributions.
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Significant outliers. Outliers may have significant importance. Find-

ing these outliers is highly non-trivial, and removing them is not

necessarily desirable.

• Application context

Legacy clusterings. Previous cluster analysis results are often avail-

able. This knowledge should be reused instead of starting each

analysis from scratch.

Distributed data. Large systems often have heterogeneous distributed

data sources. Local cluster analysis results have to be integrated

into global models.

For example, in market-basket analysis and text document clustering, we found

the number of samples ranging from 103 to 105, each sample having around 103

to 105 attributes. On average, over 99% of the attributes are zero, resulting

in a very non-Gaussian feature value distribution. In fact, the distribution is

often modeled best by a Poisson with a point mass at 0. Outliers are often

present and important, such as restaurant owners in grocery shopping records,

or index pages in document clustering.

In the document clustering application context, a multitude of legacy

clusterings is available from several sources, such as Yahoo!, DMOZ, or North-

ern Light, which can be exploited for current analysis. The new challenges

of high-dimensional, large-scale, heterogeneous databases create the need for

new approaches to clustering.
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1.5 Contributions

The goal of this dissertation is to improve cluster analysis of complex, high-

dimensional, and sparse data, especially when the application scenario imposes

constraints on the desired results and on the distribution of and access to

the data. This dissertation utilizes ideas from pattern recognition, machine

learning, statistics, graph theory, matrix reordering, multi-learner systems,

and information theory to build a novel paradigm for cluster analysis based

on relationships. The specific contributions of this dissertation are as follows:

• Development of a complete framework for behavioral customer segmen-

tation. The framework extends previous work through domain specific

similarity measures such as the extended Jaccard coefficient and con-

straints such as revenue or customer balancing.

• Proposal of an intuitive and interactive clustering visualization method

based on a reordering of the similarity matrix.

• Development of a comparative framework for semi-supervised text clus-

tering and investigation of several popular clustering approaches on a

variety of data-sets. The empirical evaluation demonstrates how relation-

ship-based methods improve both quality as well as balance of results.

• Definition of the cluster ensemble problem as a counterpart to classifi-

cation ensembles in unsupervised learning. The problem of combining

previous clusterings without resorting to the original features is posed as

a mutual information maximization problem.

• Development and comparison of three relationship-based algorithms for
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the cluster ensemble problem. It is demonstrated that all of them work

well on real data and are able to deal with missing labels and soft clus-

terings.

• Application of cluster ensembles to foster robustness and to enable dis-

tributed clustering.

1.6 Organization

In the following chapter, background and related work are discussed. Relation-

ship-based clustering and visualization is presented in chapter 3 [SG00c, SG00a,

SG00b, SG01, GS02, SG02b]. In chapter 4 [SGM00] we present a comparison

over a variety of clustering approaches in document clustering with a novel

evaluation framework. In chapter 5 [SG02a], we introduce the cluster ensem-

ble problem and several methods to solve it heuristically. Chapter 6 concludes

the dissertation with a summary of the contributions to cluster analysis and

presents some future directions of research.
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Chapter 2

Background and Related Work

Few have heard of Fra Luca Pacioli, the inventor of double-entry

book-keeping; but he has probably had much more influence on

human life than has Dante or Michelangelo.

– Herbert J. Muller1

2.1 Overview

Clustering has been widely studied in several disciplines, specially since the

early 60’s [Har75, JMF99]. Some classic approaches include partitional meth-

ods such as k-means, hierarchical agglomerative clustering, unsupervised Bayes,

and soft2 techniques, such as those based on fuzzy logic or statistical me-

chanics [CG96]. Conceptual clustering [Fis87b], which maximizes category

utility, a measure of predictability improvement in attribute values given a

clustering, is also popular in the machine learning community. In most clas-

1In The Uses of the Past, 1952
2In soft clustering, a record can belong to multiple clusters with different degrees of

‘association’ [KG99].

15



sical techniques, and even in fairly recent ones proposed in the data mining

community (CLARANS, DBSCAN, BIRCH, CLIQUE, CURE, WAVECLUS-

TER, etc. [RS99, HKT01]), the objects to be clustered only have numerical

attributes and are represented by low-dimensional feature vectors. The clus-

tering algorithm is then based on distances between the samples in the orig-

inal vector space [SWY75]. Thus these techniques are faced with the ‘curse

of dimensionality’ and the associated sparsity issues when dealing with very

high-dimensional data such as text. Indeed, often, the performance of such

clustering algorithms is demonstrated only on illustrative 2-dimensional ex-

amples.

Clustering algorithms may take an alternative view based on a notion

of similarity or dissimilarity. Similarity is often derived from the inner product

between vector representations, a popular way to quantify document similarity.

In [DM01], the authors present a spherical k-means algorithm for document

clustering using this similarity measure. Graph-based clustering approaches

that attempt to avoid the ‘curse of dimensionality’ by transforming the prob-

lem formulation into a similarity space include [KHK99, BGG+99, SG00c].

Finally, when only pairwise similarities are available, techniques such as Multi-

Dimensional Scaling (MDS) [Tor52] have been used to embed such points into

a low-dimensional space such that the stress (relative difference between em-

bedded point distances and actual distances) is minimized. Clustering can

then be done in the embedding space. However, in document clustering this

is not commonly used since for acceptable stress levels the dimensionality of

the embedding space is too high.

Clustering has also been studied for the purpose of browsing. A 2-

dimensional Self-Organizing Map (SOM) [Koh95] has been applied to produce
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a map of Usenet postings in WEBSOM [HKLK97]. The emphasis in WEB-

SOM is not to maximize cluster quality but to produce a human interpretable

2-dimensional spatial map of known categories (e.g., newsgroups). In the Scat-

ter/Gather approach [CKPT92], document clustering is used for improved in-

teractive browsing of large query results. The focus on this work is mostly

on speed/scalability and not necessary maximum cluster quality. In [ZE98],

clustering effectiveness was studied for its effectiveness on web documents.

There is also substantial work on categorizing documents. Here, since

at least some of the documents have labels, a variety of supervised or semi-

supervised techniques can be used [MR99, NMTM98]. A technique using the

support vector machine is discussed in [Joa98]. There are several comparative

studies on document classification [YP97, Yan99].

Dimensionality reduction for text classification/clustering has been stud-

ied as well. Often, the data is projected onto a small number of dimensions

corresponding to principal components or a scalable approximation thereof

(e.g., FASTMAP [FL95]). In Latent Semantic Indexing (LSI) [DDL+90] the

term-document matrix is modeled by a rank-K approximation using the top K

singular values. While LSI was originally used for improved query processing

in information retrieval, the base idea can be employed for clustering as well.

In bag-of-words approaches, the term-frequency matrix contains occur-

rence counts of terms in documents. Often, the matrix is preprocessed in order

to enhance discrimination between documents. There are many schemes for

selecting term and global normalization components. One popular preprocess-

ing is normalized Term Frequency and Inverse Document Frequency (TF-IDF),

which also comes in several variants [Sal89, BY99]. However, this dissertation

will not discuss the properties of feature extraction, see e.g., [Kol97, Lew92]
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instead. In [YP97, Yan99] classification performance of several other prepro-

cessing schemes are compared.

2.2 Clustering Algorithms

This section gives a brief overview over previous work in general purpose clus-

tering algorithms. The most popular and the best understood clustering algo-

rithm is k-means. A robust version of k-means that uses the medoid instead

of the mean to assure that a cluster’s representative is an actually observed

sample is k-medoids. In agglomerative nearest-neighbor clustering, the sin-

gleton cluster samples are successively merged into a tree structure in n − 1

steps. In each step the closest pair, the nearest-neighbors, are joined. All three

algorithms generally are intended for use with metric distances. However, es-

pecially for our high-dimensional applications it may be useful to replace the

metric distances by a more general similarity measure. Also, artificial neural

systems and dimensionality reducing techniques have been successfully ap-

plied to clustering. In statistical pattern recognition, the data is modeled as

a mixture of parametric density functions, which yields a theoretically opti-

mal treatment of the problem. However, the appropriate parametric families

are often not known in advance and the growth of the number of parameters

raises estimation error (variance) issues. Recently, the database community

proposed a variety of highly scalable approaches for large data-sets. How-

ever, the models are very simple (usually Euclidean/Gaussian) and may not

fit the properties of high-dimensional data. The graph metaphor provides a

well-known framework to pose the clustering problem. Efficient partitioning

algorithms exist, but theoretical properties for clustering and experimental

18



evaluations still need to be explored.

2.2.1 The k-means Framework

The k-means algorithm is a very simple and very powerful iterative technique

to partition a data-set into k disjoint clusters, where the value k has to be

pre-determined [DH73, Har75]. A generalized, similarity-based description of

the algorithm can be given as follows:

1. Start at t = 0 with k randomly selected objects as the cluster centers

c
(0)
ℓ , ℓ ∈ {1, . . . , k}.

2. Assign each object xj to the cluster center with maximum similarity:

λ
(t)
j = arg max

ℓ∈{1,...,k}
s(xj, c

(t)
ℓ ) (2.1)

3. Update all k cluster means:

c
(t+1)
ℓ =

1

|C(t)
ℓ |

∑

λ
(t)
j =ℓ

xj (2.2)

4. If any c
(t+1)
ℓ differs from c

(t)
ℓ go to step 2 with t ← t+1 unless termination

criteria (such as exceeding the maximum number of iterations) are met.

When similarity is based on a strictly monotonic decreasing mapping of Eu-

clidean distances, k-means greedily minimizes the sum of squared distances of

the samples xj to the closest cluster centroid cλj
as given by equation 2.3.

n
∑

j=1

‖xj − cλj
‖2

2 =
k

∑

ℓ=1

∑

x∈Cℓ

‖x − cℓ‖2
2 (2.3)
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2.2.2 Robust k-medoids

Whenever higher robustness [Hub81] is sought or when means are not mean-

ingful (e.g., certain binary features), the k-medoids algorithm, while compu-

tationally expensive, might be the method of choice. It uses medoids (rep-

resentative sample objects) instead of means. However, the extension of a

median to multivariate data is usually realized using a randomized approach.

A random object is selected and the cost function is evaluated assuming that

the selected object is one of the k-medoids. If the cost decreases, a swap is

performed and the search is iterated until no changes occur for all medoids.

2.2.3 Agglomerative Nearest-neighbor Clustering

Nearest-neighbor clustering is an agglomerative single-link clustering tech-

nique. Starting with each sample as a singleton cluster, at each stage, the

closest pair of clusters is merged. After n− 1 stages, only one cluster remains

and the resulting binary tree can be cut at the desired (or user specified) depth

to yield a specific partitioning. The central design choice is the definition of

cluster distance:

Minimum distance (single-link). The distance of two clusters equals the

minimum distance of all pairs of points taken one from each cluster.

This definition yields an algorithm similar to the Minimum Spanning

Tree (MST) algorithm and is susceptible to ‘bridging’: a line of points

connecting clusters may cause their unintended merge.

Maximum distance (complete-link). Conversely, using the maximum pair-

wise distance prefers spherical and compact clusters and minimizes clus-
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ter diameter.

Average distance. Balancing this trade-off one might also choose the aver-

age pair-wise distance as the cluster distance.

Mean distance. An efficient method is to compute the mean of each clus-

ter and define cluster distance as the distance between the two clusters

means. Then, not all pairs’ distances have to be computed.

However, the O(n2) to O(n3) complexity of nearest-neighbor clustering and

the greedy nature without any backtracking are significant drawbacks.

2.2.4 Artificial Neural Systems

In artificial neural networks [Bis95, MMR97], the input passes through a con-

nected network of simple processing units called neurons to the output. Often,

each neuron represents a function Φ : R
d → R which maps several inputs to a

single output by a weighted summation and non-linear transformation step. In

competitive networks (such as Hamming network, MaxNet) a neuron has ex-

citory effect on itself and inhibitory effects on its neighbors. For example, the

max-function and k-means clustering can be expressed as a winner-take-all

network. An adaptive approach that allows for a variable number of clus-

ters and is controlled by a vigilance parameter is Adaptive Resonance Theory

(ART) [CG88]. The most popular networks for clustering are topologically

organized networks. The Self-Organizing (feature) Map (SOM) was proposed

by Kohonen [Koh95] and fits a predefined network structure to the data in a

topology preserving fashion by updating the winner and its adjacent neighbors.
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2.2.5 Projective Techniques

In many domains, the high-dimensional representation contains redundant in-

formation considering the clustering task. In document clustering, for example,

many different words and phrases can be used to convey a similar meaning.

Hence, the vector-space representation contains highly correlated evidence and

the clustering process can be extended as follows:

1. Find an appropriate projection of the original data (D > 105) into con-

cept space (d > 102).

2. Perform clustering in the dimensionality reduced space.

Good sub-spaces for projections are characterized by preserving most of the

‘information’ in the data. For a regular matrix the K eigenvectors with the

K highest eigenvalues are the K orthogonal directions of projection that ex-

plain the maximum possible of the variance in the data [Str88]. The extension

of the eigen decomposition to non-square matrices is the Singular Value De-

composition (SVD). SVD is closely related to Principal Component Analysis

(PCA) which is based on the SVD of the zero-mean normalized data. In La-

tent Semantic Indexing (LSI) the d × n word-document matrix X is modeled

by a rank-K approximation using the top K singular values. While LSI is

originally used for improved query processing in information retrieval the base

idea may be employed for clustering as well. A matrix U is unitary if and only

if U†U = I. Equation 2.4 gives the singular value decomposition (SVD) of the

d × n data matrix A = X into a product of the unitary d × r matrix U, the

diagonal r × r matrix Σ, and the unitary r × n matrix V†.

A = UΣV†, U†U = I, V†V = I, ∀(i 6= j) : σi,j = 0 (2.4)
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r is the rank of X. AK is the best rank K-approximation of A (with K < r)

which is obtained by using ΣK , which is Σ with the original upper-left K

diagonal entries and all others set to 0 (equation 2.5)

AK = UKΣKV†
K =

K
∑

i=1

σiuiv
†
i (2.5)

The left-singular column vectors u ∈ R
d in U are called the concept vectors

with ‖u‖ = 1. In general, A looses its sparsity since the projection is not

axis-parallel. However, the concept space does not have to be instantiated

explicitly, but can be rather stored functionally, as for example, a product of

two sparse matrices. In the vector space model [SWY75, Kol97], a keyword

search can be expressed as a matrix product as shown in 2.6. A binary valued

query vector q is projected linearly to a match vector p.

p = A†q (2.6)

In the context of web-search, it has been claimed that projecting the query

vector and the web-page vectors to concept space outperforms keyword search.

The rationale for this observation lies in the fact that the rank-K approxima-

tion is actually more representative than the original data matrix, because

noise and redundancy have been removed. Also, it has been argued that by

reducing the matrix complexity to a small number of concepts, implicitly the

query is extended to encompass redundancy as introduced e.g., by synonyms.

Using the optimal rank-K-approximation (LSI) yields equation 2.7, where AK

is given by equation 2.5.

p̂ = A†
Kq = (VKΣK)(UKq) (2.7)

Generally, the rank of A has a magnitude of 103 to 105 and K is around

102. Recently, it has been reported that random subspace projections perform
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very well for high-dimensional data and are close to the optimal projection as

given by the SVD [SS97].

2.2.6 Mixture Density Estimation

In statistical pattern recognition, the data is considered as a set of observa-

tions from a parametric probability distribution. [Fuk72, DH73]. In a two

stage process, the parameters Θ of the relevant distributions are learned and

later applied to predict the behavior or origin of a new observation. In Maxi-

mum Likelihood (ML) estimation, the parameters Θ̂ are chosen such that the

probability of the observed samples X is maximized.

Θ̂ = arg max
Θ

p(X|Θ) (2.8)

Assuming that all samples are pairwise independent yields

p(X|Θ) =
n

∏

j=1

p(xj|Θ) (2.9)

Since each sample is drawn from a mixture distribution [EH81, Pri94] we have

p(xj|Θ) =
K

∑

ℓ=1

P (ωℓ) · p(xj|Θ, ωℓ),
K

∑

ℓ=1

P (ωℓ) = 1 (2.10)

The cluster-conditional probability may be assumed to be a multivariate Gaus-

sian which is defined as follows

p(xj|Θ, ωℓ) = p(xj|µℓ,Σℓ) =
1

√

(2π)d|Σℓ|
e−

1
2
(xj − µℓ)

†Σ−1
ℓ (xj − µℓ) (2.11)

If there is domain knowledge or a desired behavior of the parameter Θ’s

distribution, Bayes’ learning should be used instead of the ML estimation.

Θ̂ = arg max
Θ

p(Θ|X) (2.12)
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Again, we expand p(Θ|X) using Bayes’ rule.

p(Θ|X) =
p(Θ) · p(X|Θ)

p(X)
(2.13)

The prior distribution p(Θ) can be known from the domain or estimated,

p(X|Θ) is the ML estimate as described above and p(X) can be ignored for

optimization purposes since it is constant in respect to Θ.

The learned distributions p(x|Θ, ωℓ) can now be used for categorization

and prediction of a sample’s cluster label. The Bayes classifier is optimal in

terms of prediction error, assuming that the distribution of the data is known

precisely:

λj = arg max
ℓ∈{1,...,K}

(P (ωℓ) · p(xj|Θ, ωℓ)) (2.14)

Often, using the log-likelihood (equation 2.15) instead of the actual

probability values has advantages for optimization (e.g., convexity, products of

very small probabilities which may be problematic for fixed precision numerics

are avoided).

l(X) = − log p(X) (2.15)

The theory behind statistical models is very well understood and ex-

plicit computations of error bounds are advantageous. Statistical formulations

are advantageous for soft clustering problems with a moderate number of di-

mensions d. The very powerful Expectation-Maximization (EM) algorithm

[DLR77] has been applied to k-means [FRB98]. However, these parametric

models tend to impose structure on the data, that may not be there. The

selected distribution family may not be really appropriate. In fact, high-

dimensional data as found in data mining is distributed strongly non-Gaussian.

Also, the number of parameters increases rapidly with d so that the estima-

tion problem becomes more and more ill-posed. Non-parametric models, like
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v-nearest-neighbor, have been found preferable in many tasks where a lot of

data is available.

2.2.7 Recent Database-driven Approaches

In BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

[ZRL97], the authors propose to incrementally build a balanced tree repre-

senting the data. Each node Cℓ holds k Cluster-Features (CF), defined as

the triplet of the three sufficient statistics nℓ = |Cℓ|, LSℓ =
∑

xj∈Cℓ
xj, and

SSℓ =
∑

xj∈Cℓ
x2

j . These zeroth, first and second statistical moments are suffi-

cient to compute centroid (mean), radius (isotropic standard deviation), diam-

eter (average pairwise intra-cluster Euclidean distance) at any time during the

incremental algorithm. The user parameters are the branching factor (maxi-

mum number of children) and a splitting threshold on the diameter of a cluster.

After building this tree, a clustering algorithm of the users choice is used to

cluster the leaf nodes of the BIRCH tree.

CURE (Clustering Using REpresentatives) [GRS98] uses a fixed number

of well-scattered representatives for each cluster. This allows the algorithm to

adopt the middle ground between storing only the centroid and retaining all

samples. Thus the representation is non-parametric, which allows for non-

Gaussian distributions. A shrinking factor increases robustness by scaling all

samples around the corresponding cluster-center which reduces the effects of

outliers.

In CLARANS (Clustering Large Applications based upon RANdomized

Search) [NH94], the authors propose to cluster on a randomly selected sub-set

of the data using a k-medoids based algorithm. Subsequently, neighboring
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solutions (a clustering with one replaced medoid) are explored and the sub-

sample is re-randomized until a local optimum is found. The entire process is

repeated to de-localize the search and find a more global solution.

When sampling, the success depends strongly on the size of the sub-set,

which has to be big enough to preserve the knowledge from the original data.

In large database applications, random sub-sampling is often as expensive as

performing an entire scan, since the used data structures are not tuned for

random access.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

[EKSX96] is based on the notion of core objects (defined by having a mini-

mum number of points within an ǫ-neighborhood), density-reachability (non-

symmetric), and density-connectedness (symmetric). However, considering

the high number of dimensions in data mining applications (and consequently

the sparseness of data in feature space) it seems questionable if the notion of

density remains meaningful.

2.2.8 Graph-based Clustering

ROCK (Robust Clustering using linKs) [GRS99] is an agglomerative hierarchi-

cal clustering technique for categorical attributes. It uses the binary Jaccard

coefficient and a thresholding criterion to establish links between samples. The

links are unweighted edges in a graph with vertices corresponding to the ob-

jects to be clustered. Common neighbors are used to define inter-connectivity

of clusters which is used to merge clusters. Another key idea in ROCK is to

define a transitive neighbor relationship. Instead of only using the simple links

(adjacency matrix A), all pairs with a common neighbor are linked as well (us-
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ing AA). However, we feel that this does not really add any new information

and a good clustering algorithm would not be improved by this modification

of the adjacency matrix. In adds redundancy by adding more links and hence

the desired sparsity reduced.

CHAMELEON [KHK99] starts with partitioning the data into a large

number of clusters by partitioning the v-nearest neighbor graph. In the subse-

quent stage clusters are merged based on inter-connectivity and their relative

closeness.

2.2.9 Graph and Hypergraph Partitioning

The objects to be clustered can be viewed as a set of vertices V. Two web-

pages xa and xb (or vertices va and vb) are connected with an undirected edge

of positive weight s(xa,xb), or (a, b, s(xa,xb)) ∈ E . The cardinality of the set

of edges |E| equals the number of non-zero similarities between all pairs of

samples. A set of edges whose removal partitions a graph G = (V, E) into k

pair-wise disjoint sub-graphs Gℓ = (Vℓ, Eℓ), is called an edge separator. Our

objective is to find such a separator with a minimum sum of edge weights.

While striving for the minimum cut objective, the number of objects in each

cluster has to be kept approximately equal. In this particular case of balancing,

the problem is NP-hard and known as graph partitioning.

Balanced clusters are desirable because each cluster represents an equally

important share of the data. However, some natural classes may not be equal

size. By using a higher number of clusters we can account for multi-modal

classes (e.g., XOR-problem) and clusters can be merged at a latter stage. The

most expensive step in this O(n2 ·d) technique is the computation of the n×n
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similarity matrix. In document clustering, sparsity can be induced by looking

only at the v strongest edges or at the subgraph induced by pruning all edges

except the v nearest-neighbors for each vertex. Sparsity makes this approach

feasible for large data-sets.

The Kernighan-Lin (KL) algorithm has been a very successful O(n3)

algorithm for graph partitioning [KL70]. The KL is based on iteratively con-

ducting best sequences of swaps involving all vertices. In an improved imple-

mentation by Fiduccia and Mattheyses [FM82], the complexity was of the KL

algorithm was reduced to O(|E|).
In spectral bisection [HL95, PSL90] the partitioning problem is reduced

to finding the second least dominant eigenvector of the Laplacian matrix ∇.

Consider the incidence matrix C whose entries are defined as follows:

ci,j =



















1 if (i, a) = ej ∈ E
−1 if (a, i) = ej ∈ E
0 else

. (2.16)

The Laplacian ∇ can be written as

∇ = CC† (2.17)

and has the vertex degrees on the diagonal. Off-diagonal entries indicate -1 if

an edge between the row- and column-vertex exists and 0 otherwise. By con-

struction, ∇ is symmetric and thus has real eigenvalues and its eigenvectors

are real and orthogonal. Moreover, all columns and rows sum up to 1. Conse-

quently the smallest eigenvalue is 0 with eigenvector 1, or ∇1 = 0·1. For graph

bi-section (k = 2), it turns out that the ratio-cut objective is maximized when

splitting according to the signs of the entries in the second smallest eigenvector
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of the Laplacian, which is also called the Fiedler vector [Fie73, Fie75]. This

algorithm can be extended to k > 2 and weighted edges.

Currently, the best available algorithms use the KL-algorithm or spec-

tral bisection in a multi-level framework which has three stages:

• Coarsen graph by collapsing appropriate vertices

• Initial partitioning of simplified graph

• Un-coarsen graph and refine partitioning

A hypergraph is a graph whose edges can connect more than two vertices

(hyperedges). The clustering problem is then formulated as a finding the

minimum-cut of a hypergraph. A minimum-cut is the removal of the set of

hyperedges (with minimum edge weight) that separates the hypergraph into

k unconnected components. Again, an object xj maps to a vertex vj. Each

feature maps to a hyperedge connecting all vertices with a non-zero value for

this particular feature, so |E| = d. The minimum-cut of this hypergraph into k

unconnected components gives the desired clustering. Hypergraphs are often

used in VLSI design. An application to association rule hypergraph clustering

can be found in [BGG+99].

A variety of packages for graph partitioning is available. A Matlab kit

for geometric mesh partitioning (requires coordinate information for vertices)

[GMT95] and spectral bi-section [PSL90] by John R. Gilbert and Shang-Hua

Teng is available from Xerox. Currently, the most popular programs for graph

partitioning are CHACO (available from Bruce Hendrickson at Los Alamos

National Labs) [HL94] and METIS (George Karypis, University of Minnesota)

[KK98a, KK98b]. Both implement the currently fastest available algorithm, a
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multi-level version of Kernighan-Lin [KL70, FM82]. A popular package for hy-

pergraph partitioning is HMETIS (George Karypis, University of Minnesota)

[KAKS97].

2.3 Scalability

High-dimensional data is often very sparse, e.g. most entries in the data ma-

trix are zero. Using this sparsity in efficient data structures and algorithms

can reduce temporal and storage complexity by several orders of magnitude.

Scalability can be investigated in terms of the number of objects n and the

number of dimensions d. Traditionally, scaling to large n has been considered

more. In this dissertation, we focus on applications with large d. For scaling

to large n, there are four main ways of reducing complexity in order to scale

clustering algorithms:

Sampling. Sample the data, cluster the sample points and then use a quick

heuristic to allocate the non-sampled points to the initial clusters. This

approach will yield a faster algorithm at the cost of some possible loss in

quality, and is employed, for example in the Buckshot algorithm for the

Scatter/Gather approach to iterative clustering for interactive browsing

[CKPT92]. If the sample is O(
√

n), and ‘nearest cluster center’ is used

to allocate the remaining points, one obtains an O(kn) algorithm. Also

related are randomized approaches that can partition a set of points

into two clusters of comparable size in sublinear time, producing a (1+ǫ)

solution with high probability [Ind99]. We shall show later that since

OPOSSUM is based on balanced clusters, sampling is a good choice since

one can ensure with high probability that each cluster is represented in
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the sample without needing a large sample size.

Sequential building. Construct a ‘core’ clustering using a small number of

elements, and then sequentially scan the data to allocate the remaining

inputs, creating new clusters (and optionally adjusting existing centers)

as needed. Such an approach is seen e.g., in BIRCH [ZRL97]. This

style compromises balancing to some extent, and the threshold deter-

mining when a new cluster is formed has to be experimented with to

bring the number of clusters obtained to the desired range. A version

of this approach for graph partitioning using a corrupted clique model

was proposed by [BDSY99] and applied to clustering gene expressions.

This can be readily used for OPOSSUM as well. Sequential building

is specially popular for out-of-core methods, the idea being to scan the

database once to form a summarized model (for instance, the size, sum

and sum-squared values of each cluster [BFR98]) in main memory. Sub-

sequent refinement based on summarized information is then restricted

to main memory operations without resorting to further disk scans.

Representatives. Compare with representatives rather than with all points.

Using m < n representatives reduces the number of similarities to be

considered from O(n2) to O(nm). For example, in k-means, the current

cluster means are used as representatives. Since points do not have to

compared to all others but only to a few centroids (the current means),

scalability is considerably improved. The results, however, become sen-

sitive to the initial selection of representatives. Also, representatives

might have to be updated resulting in an iterative algorithm.

Pre-segmentation. Apply prior domain knowledge to pre-segment the data,

32



e.g. using indices or other ‘partitionings’ of the input space. Pre-seg-

mentations can be coarser (e.g., to reduce pairwise comparisons by only

comparing within segments) or finer (e.g., to summarize points as a pre-

processing step as in BIRCH) than the final clustering. As mentioned

earlier, this becomes increasingly problematic as the dimensionality of

the input space increases to the hundreds or beyond, where the suitable

segments may be difficult to estimate, pre-determine, or populate.

All these approaches are somewhat orthogonal to the main clustering routine

in that they can be applied in conjunction with most core clustering routines

to save computation, at the cost of some loss in quality.

2.4 Visualization

Visualization of high-dimensional data clusters can be largely divided into four

popular approaches:

1. Dimensionality reduction by selection of 2 or 3 dimensions, or, more

generally, projecting the data down to 2 or 3 dimensions. Often these

dimensions correspond to principal components or a scalable approxi-

mation thereof (e.g., FASTMAP [FL95]). Chen, for example, creates a

browsable 2-dimensional space of authors through co-citations [Che99].

Another noteworthy method is CViz [DMS98], which projects onto the

plane that passes through three selected cluster centroids to yield a ‘dis-

crimination optimal’ 2-dimensional projection. These projections are

useful for a medium number of dimensions, i.e., if d is not too large (<

100).3 Nonlinear projections have also been studied [CG01]. Recreating

3For text mining, linearly projecting down to about 20-50 dimensions does not affect
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a 2- or 3-dimensional space from a similarity graph can also be done

through multi-dimensional scaling [Tor52].

2. Parallel axis plots show each object as a line along d parallel axis. How-

ever, this technique is rendered ineffective if the number of dimensions

d or the number of objects gets too high.

3. Kohonen’s Self Organizing Map (SOM) [Koh90] provides an innova-

tive and powerful way of clustering while enforcing constraints on a

logical topology imposed on the cluster centers. If this topology is 2-

dimensional, one can readily ‘visualize’ the clustering of data. Essen-

tially a 2-dimensional manifold is mapped onto the (typically higher

dimensional) feature space, trying to approximate data density while

maintaining topological constraints. Since the mapping is not bijective,

the quality can degrade very rapidly with increasing dimensionality of

feature space, unless the data is largely confined to a much lower order

manifold within this space [CG01]. Multi-Dimensional Scaling (MDS)

and associated methods also face similar issues.

4. Visualization can also be done by showing the data matrix as an image

by converting entries to brightness values. The ordering of data points

for visualization has previously been used in conjunction with clustering

in different contexts. For example, in OPTICS [ABKS99] instead of pro-

ducing an explicit clustering, an augmented ordering of the database is

produced. Subsequently, this ordering is used to display various metrics

results much (e.g., LSI). However, it is still too high to visualize. A projection to lower
dimensions leads to substantial degradation and 3-dimensional projections are of very limited
utility.
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such as reachability values. In cluster analysis of genome data [ESBB98]

re-ordering the primary data matrix and representing it graphically has

been explored. This visualization takes place in the primary data space

rather than in the relationship-space. Sparse primary data matrix re-

orderings have also been considered for browsing hypertext [BHR96].

A useful survey of visualization methods for data mining in general can be

found in [KK96]. The popular books by E. Tufte [Tuf83] on visualizing infor-

mation are also recommended.

2.5 Ensembles and Knowledge Reuse

There is an extensive body of work on combining multiple classifiers or regres-

sion models, but little on combining multiple clusterings so far in the machine

learning community. However, in traditional pattern recognition, there is a

substantial body of largely theoretical work on consensus classification during

the mid-80’s and earlier [NN86a, NN86b, BLM86]. These studies used the

term ‘classification’ in a very general sense, encompassing partitions, dendro-

grams and n-trees as well. Today, such operations are typically referred to

as clusterings. In consensus classification, a profile is a set of classifications

which is sought to be integrated into a single consensus classification. A rep-

resentative work is that of [NN86a], which investigated techniques for strict

consensus. They first construct a lattice over the set of all partitionings by

using the refinement relation. Partitioning A is a refinement of partitioning B

if every cluster in A is a subset of some cluster in B. This refinement relation

defines a partial order, and thus for each pair of partitionings, a supremum

and an infimum exist. A strict consensus finds the supremum and infimum of
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all given pairs of clusterings, thus yielding the consensus interval.

Such work on strict consensus works well for small data-sets with little

noise and little diversity. But, in presence of strong noise the results can be

trivial, namely the supremum is the monolithic clustering (one cluster) and

the infimum is the set of singletons. Also, the computations are intractable

for large data-sets. Another drawback is that the strict consensus is not at the

same level of resolution.

The most prominent application of strict consensus is by the computa-

tional biology community to obtain phylogenetic trees [KW99, KWY95]. A

set of DNA sequences can be used to generate evolutionary trees using criteria

such as maximum parsimony, but often one obtains several hundreds of trees

with the same score function. In such cases, biologists look for the strict con-

sensus tree, the ‘infimum’, which has lower resolution but is compatible with

all the individual trees. Note that such systems are different from the cluster

ensembles proposed in chapter 5 in that (i) they are hierarchical clusterings,

typically using unrooted trees, (ii) have domain specific distance metrics (e.g.,

Robinson-Foulds distance) and evaluation criteria such as parsimony, speci-

ficity and density, and (iii) strict consensus is a requirement.

The most important difference between our work in chapter 5 and stud-

ies of the 80’s on ‘consensus classification’ is that the latter obtains consensus

at a different level of refinement, whereas this dissertation focuses on consen-

sus at the same level or scale. For example, taking the intersections of two

partitionings results in a number of partitions up to the product of the num-

bers of partitions in the original partitionings, thus moving the analysis to a

much finer scale.

Two interesting applications of using consensus ideas to help classifi-
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cation/regression problems have emerged recently. Consensus decision trees

have been used to generate a single decision tree from N -fold cross-validated

C4.5 results [KLF01]. Objects are clustered according to their positions or

paths in the N decision trees. Then, only objects of the majority class in each

cluster are selected to form a new training set that generates the consensus de-

cision tree. The goal here is to obtain a single, simplified decision tree without

compromising much on classification accuracy. In [Rag01], many models are

obtained for a regression problem. These models are then clustered, based on

their pairwise mutual information. Finally, a smaller committee is obtained

for the regression problem by selecting a representative model from each clus-

ter. Note that neither of these works actually combine multiple partitionings

of the input data, but instead use clustering as an intermediate step in solving

a classification or regression problem.

In chapter 5, we will propose to exploit multiple existing groupings of

the data. Several analogous approaches exist in supervised learning scenarios

(class labels are known), under categories such as ‘life-long learning’ [Thr96],

‘learning to learn’ [TP97] and ‘knowledge reuse’ [BG98, BG99]. Several re-

searchers have attempted to directly reuse the internal state information from

classifiers under the belief that related classification tasks may benefit from

common internal features. One approach to this idea is to use the weights of

hidden layers in an Multi-Layer Perceptron (MLP) classifier architecture to

represent the knowledge to be shared among the multiple tasks being trained

on simultaneously [Car95]. Pratt [Pra94] uses some of the trained weights from

one MLP network to initialize weights in another MLP to be trained for a later,

related task. In a related work, Silver and Mercer [SM96] have developed a

system consisting of task networks and an experience network. The experience
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network tries to learn the converged weights of related task networks in order

to initialize weights of target task networks. Both of these weight initializa-

tion techniques resulted in improved learning speed. Besides weight reuse in

MLP type classifiers, other state reuse methods have been developed. One ap-

proach, developed by Thrun [TO96], is based on a nearest neighbor classifier

in which each of the dimensions of the input space is scaled to bring examples

within a class closer together while pushing examples between different classes

apart. The scaling vector derived for one classification task is then used in

another, related task. We have previously proposed a knowledge reuse frame-

work wherein the labels produced by old classifiers are used to improve the

generalization performance of a new classifier for a different but related task

[BG98]. This improvement is facilitated by a supra-classifier that accesses only

the outputs of the old and new classifiers, and does not need the training data

that was used to create the old classifiers. Substantial gains are achieved when

the training set size for the new problem is small, but can be compensated for

by the extraction of information from the existing related solutions.

More recently, a host of semi-supervised methods have emerged that

augment a limited training set of labeled data by a larger amount of unlabelled

data. One powerful idea is to use co-training [BM98], whose success hinges

on the presence of multiple ‘redundantly sufficient’ views of the data. For

example, Muslea et al. introduced a multi-view algorithm including active

sampling based on co-training [MMK01]. Nigam and Ghani investigated the

effectiveness of co-training in semi-supervised settings [NG00].

Another application of our cluster ensembles is to combine multiple clus-

tering that were obtained based on only partial sets of features. This problem

has been approached recently as a case of collective data mining [KPHJ99]. In
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[JK99] a feasible approach to combining distributed agglomerative clusterings

is introduced. First, each local site generates a dendrogram. The dendrograms

are collected and pairwise similarities for all objects are created from them.

The combined clustering is then derived from the similarities. In [KHSJ01], a

distributed method of principal components analysis is introduced for cluster-

ing.

The usefulness of having multiple views of data for better clustering

has been recognized by others as well. In multi-aspect clustering [MS00],

several similarity matrices are computed separately and then integrated using

a weighting scheme. Also, Mehrotra has proposed a multi-viewpoint clustering,

where several clusterings are used to semi-automatically structure rules in a

knowledge base [Meh99].

In our proposed algorithms, we use hypergraph representations which

have been extensively studied [GJ79]. Hypergraphs have been previously used

for (a single) high-dimensional clustering [HKKM97] but not for combining

multiple groupings. Mutual information [CT91] is a useful measure in a vari-

ety of contexts. For example, the information bottleneck method [ST00] is an

information-theoretical approach that uses mutual information to do dimen-

sionality reduction (e.g., through clustering) while trying to preserve as much

information about the class labels as possible.

2.6 Challenges

In section 1.4, we introduced some of the challenges clustering faces in current

data mining scenarios. In this section, we highlight a selection of challenges

that have been identified and addressed more extensively in previous work.
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2.6.1 The Problem of Scale

Most clustering algorithms assume the number of clusters to be known a pri-

ori. The desired granularity is generally determined by external, problem

specific criteria. For example, such a criterion might be the user’s willingness

to deal with complexity and information overload. This issue of scale remains

mostly unsolved although various promising attempts such as Occam’s razor,

minimum description length, category utility, etc. have been made.

Finding the ‘right’ number of clusters, k, for a data-set is a difficult,

and often ill-posed, problem. Gelman in [GCSR95] on page 424 says in a

mixture modeling context: “One viewpoint is that the problem of finding the

best number of clusters is fundamentally ill-defined and best avoided.” Let us

illustrate the problem by a data-set where points are arranged in a grid-like

pattern on the 2D plane (figure 2.1). The points are arranged in four squares

such that when ‘zooming in’ the same square structure exists but on a lower

scale. When asking what is the number of clusters for that data-set, there

are at least 3 good answers possible, namely 4, 16, and 64. Depending on the

desired resolution the ‘right’ number of clusters changes. In general, there are

multiple good k’s for any given data. However, a certain number of clusters

might be more stable than others. In the example shown in figure 2.1, five

clusters is probably not a better choice than four.

Since there seems to be no definite answer to how many clusters are in

a data-set, a user-defined criterion for the resolution has to be given instead.

In the general case, the number of clusters is assumed to be known. Alter-

natively, one might want to reformulate the specification of scale through an

upper bound of acceptable error (which has to be suitably defined) or some
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other criterion. Many heuristics for finding the right number of clusters have

been proposed. Occam’s razor states that the simplest hypothesis that fits the

data is the best [BEHW87, Mit97]. Generally, as the model complexity grows

the fit improves. However, over-learning with a loss of generalization may

occur. In probabilistic clustering, likelihood-ratios, v-fold-cross-validation, pe-

nalized likelihoods (e.g., Bayesian information criterion), and Bayesian tech-

niques (AUTOCLASS) are popular [Smy96, MC85]:

Cross-validation. A recent Monte Carlo cross-validation based approach

[Mil81] which minimizes the Kullback-Leibler information distance to

find the right number of clusters can be found in [Smy96].

Category Utility. In machine learning, category utility [GC85, Fis87a] has

been used to asses the quality of a clustering for a particular k. Category

utility is defined as the increase in the expected number of attribute val-

ues vi,h (the h-th discrete level of feature i) that can be correctly guessed,

given a partitioning λ over the expected number of correct guesses with

no such knowledge. A weighted average over categories allows compari-

son of different size partitions.

Bayesian Solution. In the full Bayesian solution the posterior probabilities

of all values of k are computed from the data and priors for the data and

k itself. AUTOCLASS [CS96] uses this approach with some approxima-

tions to avoid computational issues with the complexity of this approach.

The complexity makes this approach infeasible for very high-dimensional

data.

Regularization. A feasible approach for high-dimensional data mining is a
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Figure 2.1: Example for the problem of scale. Four examplary clusterings are
shown for the 2-dimensional RECSQUARE data-set. 4, 16, and 64 are ‘equally
good’ choices for the number of clusters k.
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regularization-based approach. A penalty term is introduced to discour-

age a high number of parameters. Variations of this theme include penal-

ized likelihoods, such as the Bayesian Information Criterion (BIC), and

coding-based criteria, such as Minimum Description Length (MDL).

2.6.2 Curse of Dimensionality

When dealing with very high-dimensional data, one is faced with the ‘curse

of dimensionality’ [Fri94] and the associated sparsity issues. Essentially the

amount of data to sustain a given spatial density increases exponentially with

the dimensionality of the input space, or alternatively, the sparsity increases

exponentially given a constant amount of data, with points tending to be-

come equidistant from one another. In general, this will adversely impact any

method based on spatial density, unless the data follows certain simple distri-

butions. Figure 2.2 gives a simple illustration of the curse of dimensionality.

2.6.3 Clustering Objectives

The informal description of clustering as finding meaningful groups does not

suggest a straightforward way of evaluating clusters or defining an objective

function. Many definitions of good clustering exist. Prominently, clustering

has been posed as an optimization problem for minimum error (least squared

error) or maximum attribute predictability (category utility). However, many

proposals have been made to evaluate cluster quality or validity [JMF99]. No

consensus has been reached in the community and this dissertation will give a

brief overview of evaluation criteria in section 4.4.

43



−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2000

4000

6000

8000

0 0.5 1
0

2

4

6

8
x 10

4

Figure 2.2: Curse of dimensionality illustrated with 256 d-dimensional points
from a [0,1] uniform distribution with d = 2 (left), 4 (middle) and 32 (right).
The top row shows the results of the 2D Principal Components Analysis
(PCA). The bottom row shows how similarity (as a monotonically decreas-
ing function of Euclidean distance) is distributed. As d increases, projections
approach Gaussian distributions. Also, an average pair of points’ similarity
decreases rapidly and similarities become approximately equal for most pairs
with increasing d.
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Chapter 3

Relationship-based Clustering

and Visualization

One picture is worth ten thousand words.

– Frederick R. Barnard1

In several real-life data mining applications, data resides in very high

(1000 and more) dimensional space, where both clustering techniques devel-

oped for low dimensional spaces (k-means, BIRCH, CLARANS, CURE, DB-

Scan, etc.) as well as visualization methods, such as parallel coordinates or

projective visualizations, are rendered ineffective. This chapter proposes a

relationship-based approach that alleviates both problems, side-stepping the

‘curse of dimensionality’ issue by working in a suitable similarity space instead

of the original high-dimensional attribute space. This intermediary similarity

space can be suitably tailored to satisfy business criteria such as requiring

customer clusters to represent comparable amounts of revenue. We apply effi-

1In Printers’ Ink, March 1927
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cient and scalable graph partitioning-based clustering techniques in this space.

The output from the clustering algorithm is used to re-order the data points

so that the resulting permuted similarity matrix can be readily visualized in

2 dimensions, with clusters showing up as bands. While 2-dimensional vi-

sualization of a similarity matrix is by itself not novel, its combination with

the order-sensitive partitioning of a graph that captures the relevant similar-

ity measure between objects provides three powerful properties: (i) the high-

dimensionality of the data does not affect further processing once the similarity

space is formed; (ii) it leads to clusters of (approximately) equal importance,

and (iii) related clusters show up adjacent to one another, further facilitating

the visualization of results. The visualization is very helpful for assessing and

improving clustering. For example, actionable recommendations for splitting

or merging of clusters can be easily derived, and it also guides the user towards

the right number of clusters. Results are presented on a real retail industry

data-set of several thousand customers and products, as well as on clustering

of web-document collections and of web-log sessions.

3.1 Motivation

Knowledge discovery in databases often requires clustering the data into a

number of distinct segments or groups in an effective and efficient manner.

Good clusters show high similarity within a group and low similarity between

any two different groups. Besides producing good clusters, certain cluster-

ing methods provide additional useful benefits. For example, Kohonen’s Self-

Organizing feature Map (SOM) [Koh90] imposes a logical, ‘topographic’ or-

dering on the cluster centers such that centers that are nearby in the logical
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ordering represent nearby clusters in the feature space. A popular choice

for the logical ordering is a two-dimensional lattice which allows all the data

points to be projected onto a two-dimensional plane for convenient visualiza-

tion [Hay99]. While clustering is a classical and well studied area, it turns

out that several data mining applications pose some unique challenges that

severely test traditional techniques for clustering and cluster visualization.

For example, consider the following two applications:

• Grouping customers based on buying behavior to provide useful mar-

keting decision support knowledge; especially in e-business applications

where electronically observed behavioral data is readily available. Cus-

tomer clusters can be used to identify up-selling and cross-selling oppor-

tunities with existing customers [Law01].

• Facilitating efficient browsing and searching of the web by hierarchically

clustering web-pages.

The challenges in both of these applications mainly arise from two aspects:

1. large numbers of data samples, n, and

2. each sample having a large number of attributes or features (dimensions,

d).

Certain data mining applications have the additional challenge of how to deal

with seasonality and other temporal variations in the data. This aspect is not

within the scope of this dissertation, but see [GG01].

The first aspect is typically dealt with by subsampling the data, ex-

ploiting summary statistics, aggregating or ‘rolling up’ to consider data at a
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coarser resolution, or by using approximating heuristics that reduce compu-

tation time at the cost of some loss in quality. See [HKT01], chapter 8 for

several examples of such approaches.

The second aspect is typically addressed by reducing the number of

features, by either selection of a subset based on a suitable criteria, or by

transforming the original set of attributes into a smaller one using linear pro-

jections (e.g., Principal Component Analysis (PCA)) or through non-linear

[CG01] means. Extensive approaches for feature selection or extraction have

been long studied, particularly in the pattern recognition community [YC74,

MJ95, DHS01]. If these techniques succeed in reducing the number of (de-

rived) features to the order of 10 or less without much loss of information,

then a variety of clustering and visualization methods can be applied to this

reduced dimensionality feature space. Otherwise, the problem may still be

tractable if the data is faithful to certain simplifying assumptions, most no-

tably, that either (i) the features are class- or cluster-conditionally indepen-

dent, or that (ii) most of the data can be accounted for by a 2- or 3-dimensional

manifold within the high-dimensional embedding space. The simplest exam-

ple of case (i) is where the data is well characterized by the superposition of

a small number of Gaussian components with identical and isotropic covari-

ances, in which case k-means can be directly applied to a high-dimensional

feature space with good results. If the components have different covariance

matrices that are still diagonal (or else the number of parameters will grow

quadratically), unsupervised Bayes or mixture-density modeling with EM, can

be fruitfully applied. For situation (ii), nonlinear PCA, Self-Organizing Map

(SOM), Multi-Dimensional Scaling (MDS) or more efficient custom formula-

tions such as FASTMAP [FL95], can be effectively applied.
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This chapter primarily addresses the second aspect by describing an

alternate way of clustering and visualization when, even after feature reduction,

one is left with hundreds of dimensions per object (and further reduction will

significantly degrade the results), and moreover, simplifying data modeling

assumptions are also not valid. In such situations, one is truly faced with the

‘curse of dimensionality’ issue [Fri94]. We have repeatedly encountered such

situations when examining retail industry market-basket data for behavioral

customer clustering, and also certain web-based data collections.

Since clustering basically involves grouping objects based on their inter-

relationships or similarities, one can alternatively work in similarity space in-

stead of the original feature space. The key insight in this work is that if one

can find a similarity measure (derived from the object features) that is appro-

priate for the problem domain, then a single number can capture the essential

‘closeness’ of a given pair of objects, and any further analysis can be based

only on these numbers. The similarity space also lends itself to a simple tech-

nique to visualize the clustering results. A major contribution of this chapter

is to demonstrate that this technique has increased power when the clustering

method used contains ordering information (e.g., top-down). Popular cluster-

ing methods in feature space are either non-hierarchical (as in k-means), or

bottom-up (agglomerative clustering). However, if one transforms the cluster-

ing problem into a related problem of partitioning a similarity graph, several

powerful partitioning methods with ordering properties (as described in the

introductory paragraph) can be applied. Moreover, the overall framework is

quite generally applicable if one can determine the appropriate similarity mea-

sure for a given situation. This chapter applies it to three different domains

(i) clustering market-baskets (ii) web-documents and (iii) web-logs. In each
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situation, a suitable similarity measure emerges from the domain’s specific

needs.

The overall technique for clustering and visualization is linear in the

number of dimensions, but with respect to the number of data points, n, it is

quadratic in computational and storage complexity. This can become prob-

lematic for very large databases. Several methods for reducing this complexity

are outlined in section 3.6, but not elaborated upon much as that is not the

primary focus of this present work.

To make concrete some of the remarks above and motivate the rest of

the chapter, let us take a closer look at transactional data. A large market-

basket database may involve thousands of customers and product-lines. Each

record corresponds to a store visit by a customer, so that customer could have

multiple entries over time. The transactional database can be conceptually

viewed as a sparse representation of a product (feature) by customer (object)

matrix. The (i, j)-th entry is non-zero only if customer j bought product i in

that transaction. In that case, the entry represents pertinent information such

as quantity bought or extended price (quantity × price) paid.

Since most customers only buy a small subset of these products during

any given visit, the corresponding feature vector (column) describing such a

transaction is (i) High-dimensional (large number of products), but (ii) Sparse

(most features are zero). (iii) Also, transactional data typically has significant

outliers, such as a few, big corporate customers that appear in an otherwise

small retail customer data. Filtering these outliers may not be easy, nor de-

sirable since they could be very important (e.g., major revenue contributors).

(iv) In addition, features are often neither nominal nor continuous, but have

discrete positive ordinal attribute values, with a strongly non-Gaussian distri-
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bution.

One way to reduce the feature space is to consider only the most dom-

inant products (attribute selection), but in practice this may still leave hun-

dreds of products to be considered. And since product popularity tends to

follow a Zipf distribution [Zip29], the tail is ‘heavy’, meaning that revenue con-

tribution from the less popular products is significant for certain customers.

Moreover, in retail the higher profit margins are often associated with less pop-

ular products. One can do a ‘roll-up’ to reduce number of products, but with

a corresponding loss in resolution or granularity. Feature extraction or trans-

formation is typically not carried out as derived features lose the semantics of

the original ones as well as the sparsity property.

The alternative to attribute reduction is to try ‘simplification via model-

ing’. One approach would be to only consider binary features (bought or not).

This reduces each transaction to an unordered set of the purchased products.

Thus one can use techniques such as the a-priori algorithm to determine as-

sociations or rules. In fact, this is currently the most popular approach to

market-basket analysis (see [BL97], chapter 8). Unfortunately, this results in

loss of vital information: one cannot differentiate between buying 1 gallon of

milk and 100 gallons of milk, or one cannot weight importance between buying

an apple vs. buying a car, although clearly these are very different situations

from a business perspective. In general, association-based rules derived from

such sets will be inferior when revenue or profits are the primary performance

indicators, since the simplified data representation loses information about

quantity, price or margins. The other broad class of modeling simplifications

for market-basket analysis is based on taking a macro-level view of the data

having characteristics capturable in a small number of parameters. In retail,
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a 5-dimensional model for customers composed from indicators for Recency,

Frequency, Monetary value, Variety, and Tenure (RFMVT) is popular. How-

ever, this useful model is at a much lower resolution that looking at individual

products and fails to capture actual purchasing behavior in more complex ways

such as taste / brand preferences, or price sensitivity,

Due to all the above issues, traditional vector-space-based clustering

techniques work poorly on real-life market-basket data. For example, a typical

result of hierarchical agglomerative clustering (both single-link and complete

link approaches) on market-basket data is to obtain one huge cluster near the

origin, since most customers buy very few items2, and a few scattered clus-

ters otherwise. Applying k-means could forcibly split this huge cluster into

segments depending on the initialization, but not in a meaningful manner.

In contrast, the similarity-based methods for both clustering and visualiza-

tion proposed in this chapter yield far better results for such transactional

data. While the methods have certain properties tailored to such data-sets,

they can also be applied to other higher dimensional data-sets with similar

characteristics. This is illustrated by results on clustering text documents,

each characterized by a bag-of-words and represented by a vector of (suitably

normalized) term occurrences, often 1000 or more in length. Our detailed com-

parative study in chapter 4 will show that in this domain traditional clustering

techniques also have some difficulties, though not as much as for market-basket

data since simplifying assumptions regarding class or cluster conditional inde-

pendence of features are not violated as much, and consequently both Naive

Bayes [MN98] and a normalized version of k-means [DM01] also show decent

results. We also apply the technique to clustering visitors to a website based

2This is the dilution effect described in [GRS99].

52



on their footprints, where, once a domain specific suitable similarity metric is

determined, the general technique again provides nice results.

We begin by considering domain-specific transformations into similar-

ity space in section 3.2. Section 3.3 describes a specific clustering technique

(OPOSSUM), based on a multi-level graph partitioning algorithm [KK98a].

In section 3.4, we describe a simple but effective visualization technique that

is applicable to similarity spaces (CLUSION). Clustering and visualization re-

sults are presented in section 3.5. In section 3.6, we consider system issues

and briefly discuss several strategies to scale OPOSSUM for large data-sets.

3.2 Domain Specific Features and Similarity

Space

Notation. Let n be the number of objects / samples / points (e.g., customers,

documents, web-sessions) in the data and d the number of features (e.g., prod-

ucts, words, web-pages) for each sample xj with j ∈ {1, . . . , n}. Let k be the

desired number of clusters. The input data can be represented by a d×n data

matrix X with the j-th column vector representing the sample xj. x†
j denotes

the transpose of xj. Hard clustering assigns a label λj ∈ {1, . . . , k} to each

d-dimensional sample xj, such that similar samples get the same label. In gen-

eral the labels are treated as nominals with no inherent order, though in some

cases, such as 1-dimensional SOMs, any top-down recursive bisection approach

as well as our proposed method, the labeling contains extra ordering informa-

tion. Let Cℓ denote the set of all objects in the ℓ-th cluster (ℓ ∈ {1, . . . , k}),
with xj ∈ Cℓ ⇔ λj = ℓ and nℓ = |Cℓ|.
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Figure 3.1: The relationship-based clustering framework.

Figure 3.1 gives an overview of our relationship-based clustering pro-

cess from a set of raw object descriptions X (residing in input space I) via

the vector space description X (in feature space F) and relationship descrip-

tion S (in similarity space S) to the cluster labels λ (in output space O):

(X ∈ In)
Υ→ (X ∈ Fn ⊂ R

d×n)
Ψ→ (S ∈ Sn×n = [0, 1]n×n ⊂ R

n×n)
Φ→ (λ ∈

On = {1, . . . , k}n). For example in web-page clustering, X is a collection of n

web-pages xj with j ∈ {1, . . . , n}. Extracting features using Υ yields X, the

term frequencies of stemmed words, normalized such that for all documents

x : ‖x‖2 = 1. Similarities are computed, using e.g., cosine-based similarity Ψ

yielding the n × n similarity matrix S. Finally, the cluster label vector λ is

computed using a clustering function Φ, such as graph partitioning. In short,

the basic process can be denoted as X Υ→ X
Ψ→ S

Φ→ λ.

Similarity Measures. In this dissertation, we prefer working in sim-

ilarity space rather than the original vector space in which the feature vec-

tors reside. A similarity measure captures the relationship between two d-

dimensional objects in a single number (using on the order of the number

of non-zero entries in the vectors or d, at worst, computations). Once this is
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done, the original high-dimensional space is not dealt with at all, we only work

in the transformed similarity space, and subsequent processing is independent

of d.

A similarity measure ∈ [0, 1] captures how related two data-points xa

and xb are. It should be symmetric (s(xa,xb) = s(xb,xa)), with self-similarity

s(xa,xa) = 1. However, in general, similarity functions (respectively their dis-

tance function equivalents δ =
√

− log(s), see below) do not obey the triangle

inequality.

An obvious way to compute similarity is through a suitable monotonic

and inverse function of a Minkowski (Lp) distance, δ. Candidates include

s = 1/(1 + δ) and s = e−δ2
, the later being preferable due to maximum

likelihood properties (see chapter 4). Similarity can also be defined by the

cosine of the angle between two vectors:

s(C)(xa,xb) =
x†

axb

‖xa‖2 · ‖xb‖2

(3.1)

Cosine similarity is widely used in text clustering because two documents

with the same proportions of term occurrences but different lengths are often

considered identical. In retail data such normalization loses important infor-

mation about the life-time customer value, and we have recently shown that

the extended Jaccard similarity measure is more appropriate [SG00c]. For

binary features, the Jaccard coefficient [JD88] (also known as the Tanimoto

coefficient [DHS01]) measures the ratio of the intersection of the product sets

to the union of the product sets corresponding to transactions xa and xb, each

having binary (0/1) elements.

s(J)(xa,xb) =
x†

axb

‖xa‖2
2 + ‖xb‖2

2 − x†
axb

(3.2)
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The extended Jaccard coefficient is also given by equation 3.2, but allows el-

ements of xa and xb to be arbitrary positive real numbers. This coefficient

captures a vector-length-sensitive measure of similarity. However, it is still

invariant to scale (dilating xa and xb by the same factor does not change

s(xa,xb)). A detailed discussion of the properties of various similarity mea-

sures can be found in chapter 4.

Since, for general data distributions, one cannot avoid the ‘curse of di-

mensionality’, there is no similarity metric that is optimal for all applications.

Rather, one needs to to determine an appropriate measure for the given ap-

plication, that captures the essential aspects of the class of high-dimensional

data distributions being considered.

3.3 OPOSSUM

In this section, we propose OPOSSUM (Optimal Partitioning of Sparse Sim-

ilarities Using Metis), a similarity-based clustering technique particularly tai-

lored to market-basket data. OPOSSUM differs from other graph-based clus-

tering techniques by application-driven balancing of clusters, non-metric sim-

ilarity measures, and visualization driven heuristics for finding an appropriate

k.

3.3.1 Balancing

Typically, one segments transactional data into 7-14 groups, each of which

should be of comparable importance. Balancing avoids trivial clusterings (e.g.,

k − 1 singletons and 1 big cluster). More importantly, the desired balancing

properties have many application driven advantages. For example when each
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cluster contains the same number of customers, discovered phenomena (e.g.

frequent products, co-purchases) have equal significance / support and are

thus easier to evaluate. When each customer cluster equals the same revenue

share, marketing can spend an equal amount of attention and budget to each

of the groups. OPOSSUM strives to deliver ‘balanced’ clusters using either of

the following two criteria:

• Sample balanced: Each cluster should contain roughly the same number

of samples, n/k. This allows, for example, retail marketers to obtain a

customer segmentation with equally sized customer groups.

• Value balanced: Each cluster should contain roughly the same amount of

feature values. Thus, a cluster represents a k-th fraction of the total fea-

ture value v =
∑n

j=1

∑d
i=1 xi,j. In customer clustering, we use extended

price per product as features and, thus, each cluster represents a roughly

equal contribution to total revenue. In web-session clustering the feature

of choice is the time spent on a particular web-page. This results in user

clusters balanced with respect to the total time spent on the site.

We formulate the desired balancing properties by assigning each object

(customer, document, web-session) a weight and then softly constrain the sum

of weights in each cluster. For sample balanced clustering, we assign each

sample xj the same weight wj = 1/n. To obtain value balancing properties,

a sample xj’s weight is set to wj = 1
v

∑d
i=1 xi,j. Please note that the sum of

weights for all samples is 1.
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3.3.2 Vertex Weighted Graph Partitioning

We map the problem of clustering to partitioning a vertex weighted graph

G into k unconnected components of approximately equal size (as defined

by the balancing constraint) by removing a minimal amount of edges. The

objects to be clustered are viewed as a set of vertices V = {x1, . . . ,xn}. Two

vertices xa and xb are connected with an undirected edge (a, b) ∈ E of positive

weight given by the similarity s(xa,xb). This defines the graph G = (V, E).

An edge separator ∆E is a set of edges whose removal splits the graph G
into k pair-wise unconnected components (sub-graphs) {G1, . . . ,Gk}. All sub-

graphs Gℓ = (Vℓ, Eℓ) have pairwise disjoint sets of vertices and edges. The

edge separator for a particular partitioning includes all the edges that are not

part of any sub-graph, or ∆E = (E \ (E1 ∪ E2 ∪ . . . ∪ Ek)). The clustering task

is thus to find an edge separator with a minimum sum of edge weights, that

partitions the graph into k disjoint pieces. The following equation formalizes

this minimum cut objective:

min
∆E

∑

(a,b)∈∆E

s(xa,xb) (3.3)

Without loss of generality, we can assume that the vertex weights wj are

normalized to sum up to 1:
∑n

j=1 wj = 1. While striving for the minimum cut

objective, the balancing constraint

k · max
ℓ∈{1,...,k}

∑

λj=ℓ

wj ≤ t (3.4)

has to be fulfilled. The left hand side of the inequality is called the imbalance

(the ratio of the biggest cluster in terms of cumulative normalized edge weight

to the desired equal cluster-size 1/k) and has a lower bound of 1. The balancing
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threshold t enforces perfectly balanced clusters for t = 1. In practice t is often

chosen to be slightly greater than 1 (e.g., we use t = 1.05 for all our experiments

which allows at most 5% of imbalance).

Thus, in graph partitioning one has to essentially solve a constrained

optimization problem. Finding such an optimal partitioning is an NP-hard

problem [GJ79]. However, there are fast, heuristic algorithms for this widely

studied problem. We experimented with the Kernighan-Lin (KL) algorithm,

recursive spectral bisection, and multi-level k-way partitioning (METIS).

The basic idea in KL [KL70] to dealing with graph partitioning is to

construct an initial partition of the vertices either randomly or according to

some problem-specific strategy. Then the algorithm sweeps through the ver-

tices, deciding whether the size of the cut would increase or decrease if we

moved this vertex x over to another partition. The decision to move x can be

made in time proportional to its degree by simply counting whether more of

x’s neighbors are on the same partition as x or not. Of course, the desirable

side for x will change if many of its neighbors switch, so multiple passes are

likely to be needed before the process converges to a local optimum.

In recursive bisection, a k-way split is obtained by recursively parti-

tioning the graph into two subgraphs. Spectral bisection [PSL90, HL95] uses

the eigenvector associated with the second smallest eigenvalue of the graph’s

Laplacian (Fiedler vector) [Fie75] for splitting.

METIS [KK98a] handles multi-constraint multi-objective graph parti-

tioning in three phases: (i) coarsening, (ii) initial partitioning, and (iii) refin-

ing. First a sequence of successively smaller and therefore coarser graphs is

constructed through heavy-edge matching. Secondly, the initial partitioning is

constructed using one out of four heuristic algorithms (three based on graph
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growing and one based on spectral bisection). In the third phase the coarsened

partitioned graph undergoes boundary Kernighan-Lin refinement. In this last

phase vertices are only swapped amongst neighboring partitions (boundaries).

This ensures that neighboring clusters are more related than non-neighboring

clusters. This ordering property is beneficial for visualization, as explained in

subsection 3.6.1. In contrast, since recursive bisection computes a bisection

of a subgraph at a time, its view is limited. Thus, it can not fully optimize

the partition ordering and the global constraints. This renders it less effective

for our purposes. Also, we found the multi-level partitioning to deliver the

best partitionings as well as to be the fastest and most scalable of the three

choices we investigated. Hence, METIS is used as the graph partitioner in

OPOSSUM.

3.3.3 Determining the Number of Clusters

Finding the ‘right’ number of clusters k for a data-set is a difficult and of-

ten ill-posed problem, since even for the same data-set, there can be several

answers depending on the scale or granularity one is interested in. In prob-

abilistic approaches to clustering, likelihood-ratios, Bayesian techniques and

Monte Carlo cross-validation are popular. In non-probabilistic methods, a

regularization approach, which penalizes for large k, is often adopted. If the

data is labelled, then mutual information between cluster and class labels can

be used to determine the number of clusters. Other metrics such as purity of

clusters or entropy are of less use as they are biased towards a larger number

of clusters (see chapter 4).

For transactional data, often the number is specified by the end-user
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to be typically between 7 and 14 [BL97]. Otherwise, one can employ a suit-

able heuristic to obtain an appropriate value of k during the clustering pro-

cess. This subsection describes how we find a desirable clustering, with high

overall cluster quality φ(Q) and a small number of clusters k. Our objective

is to maximize intra-cluster similarity and minimize inter-cluster similarity,

given by intra(X, λ, i) = 2
(ni−1)·ni

∑

λa=λb=i,b>a s(xa,xb) and inter(X, λ, i, j) =

1
ni·nj

∑

λa=i,λb=j s(xa,xb), respectively, where i and j are cluster indices. Note

that intra-cluster similarity is undefined (0/0) for singleton clusters. Hence,

we define our quality measure φ(Q) ∈ [0, 1] (φ(Q) < 0 in case of pathological

/ inverse clustering) based on the ratio of weighted average inter-cluster to

weighted average intra-cluster similarity:

φ(Q)(X, λ) = 1 −
∑k

i=1
ni

n−ni

∑

j∈{1,...,i−1,i+1,...,k} nj · inter(X, λ, i, j)
∑k

i=1 ni · intra(X, λ, i)
(3.5)

φ(Q) = 0 indicates that samples within the same cluster are on average not

more similar than samples from different clusters. On the contrary, φ(Q) = 1

describes a clustering where every pair of samples from different clusters has

the similarity of 0 and at least one sample pair from the same cluster has

a non-zero similarity. Note that our definition of quality does not take the

‘amount of balance’ into account, since balancing is already observed fairly

strictly by the constraints in the graph partitioning step.

To achieve a high quality φ(Q) as well as a low k, the target function

φ(T) ∈ [0, 1] is the product of the quality φ(Q) and a penalty term which works

very well in practice. If n ≥ 4 and 2 ≤ k ≤ ⌊n/2⌋, then there exists at least one

clustering with no singleton clusters. The penalized quality gives the penalized

quality φ(T) and is defined as φ(T)(k) =
(

1 − 2k
n

)

· φ(Q)(k). A modest linear

penalty was chosen, since our quality criterion does not necessarily improve
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with increasing k (unlike e.g. the squared error criterion). For large n, we

search for the optimal k in the entire window from 2 ≤ k ≤ 100. In many

cases, however, a forward search starting at k = 2 and stopping at the first

down-tick of penalized quality while increasing k is sufficient.

Finally, a practical alternative, as exemplified by the experimental re-

sults later, is to first over-cluster and then use the visualization aid to combine

clusters as needed (subsection 3.5.2).

3.4 CLUSION: Cluster Visualization

In this section, we present our visualization tool, highlight some of its prop-

erties and compare it with some popular visualization methods. Applications

of this tool are illustrated in section 3.5.

3.4.1 Coarse Seriation

When data is limited to 2 or 3 dimensions, the most powerful tool for judging

cluster quality is usually the human eye. CLUSION, our CLUSter visualiza-

tION toolkit, allows us to convert high-dimensional data into a perceptually

more suitable format, and employ the human vision system to explore the re-

lationships in the data, guide the clustering process, and verify the quality of

the results. In our experience with two years of Dell customer data, we found

CLUSION effective for getting clusters balanced w.r.t. number of customers or

net dollar ($) amount, and even more so for conveying the results to marketing

management.

CLUSION looks at the output of a clustering routine, reorders the data

points such that points with the same cluster label are contiguous, and then
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visualizes the resulting permuted similarity matrix, S′. More formally, the

original n × n similarity matrix S is permuted with a n × n permutation

matrix P which is defined as follows:

pi,j =







1 if j =
∑i

a=1 la,λi
+

∑λi−1
ℓ=1 nℓ

0 otherwise
(3.6)

l are entries in the binary n × k cluster membership indicator matrix L:

li,j =







1 if λi = j

0 otherwise
(3.7)

In other words, pi,j is 1 if j is the sum of the number of points amongst the

first i that belong to the same cluster and the number of points in the first

λi−1 clusters. Now, the permuted similarity matrix S′ and the corresponding

label vector λ′ and data matrix X′ are:

S′ = PSP† , λ′ = Pλ , X′ = PX (3.8)

For a ‘good’ clustering algorithm and k → n this is related to sparse

matrix reordering, for this results in the generation of a ‘banded matrix’ where

high entries should all fall near the diagonal line from the upper left to the

lower right of the matrix. Since equation 3.8 is essentially a partial ordering

operation we also refer to it as coarse seriation, a phrase used in disciplines such

as anthropology and archaeology to describe the reordering of the primary data

matrix so that similar structures (e.g., genetic sequences) are brought closer

[Mur85, ESBB98].

3.4.2 Visualization

The seriation of the similarity matrix, S′, is very useful for visualization. Since

the similarity matrix is 2-dimensional, it can be readily visualized as a gray-
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level image where a white (black) pixel corresponds to minimal (maximal)

similarity of 0 (1). The darkness (gray level value) of the pixel at row a and

column b increases with the similarity between the samples xa and xb. When

looking at the image it is useful to consider the similarity s as a random variable

taking values from 0 to 1. The expected similarity within cluster ℓ is thus

represented by the average intensity within a square region with side length

nℓ, around the main diagonal of the matrix. The off-diagonal rectangular

areas visualize the relationships between clusters. The brightness distribution

in the rectangular areas yields insight towards the quality of the clustering

and possible improvements. In order to make these regions apparent, thin red

horizontal and vertical lines are used to show the divisions into the rectangular

regions3. Visualizing similarity space in this way can help to quickly get a feel

for the clusters in the data. Even for a large number of points, a sense for the

intrinsic number of clusters k in a data-set can be gained.

Figure 3.2 shows CLUSION output in four extreme scenarios to provide

a feel for how data properties translate to the visual display. Without any loss

of generality, we consider the partitioning of a set of objects into 2 clusters.

For each scenario, on the left hand side the original similarity matrix S and

the seriated version S′ (CLUSION) for an optimal bipartitioning is shown. On

the right hand side four histograms for the distribution of similarity values

s, which range from 0 to 1, are shown. From left to right, we have plotted:

distribution of s over the entire data, within the first cluster, within the second

cluster, and between first and second cluster. If the data is naturally clustered

and the clustering algorithm is good, then the middle two columns of plots

will be much more skewed to the right as compared to the first and fourth

3This can be more clearly seen in the color pictures in the soft-copy.

64



Original (S)

(a)

Seriated (S´) Overall Within Cluster 1 Within Cluster 2 Between Clusters

(b)

(c)

(d)

Distribution of Similarities from 0 to 1

Figure 3.2: Illustrative CLUSION patterns in original order and seriated using
optimal bipartitioning are shown in the left two columns. The right four
columns show corresponding similarity distributions. In each example there
are 50 objects: (a) no natural clusters (randomly related objects), (b) set
of singletons (pairwise near orthogonal objects), (c) one natural cluster (uni-
modal Gaussian), (d) two natural clusters (mixture of two Gaussians)
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columns. In our visualization this corresponds to brighter off-diagonal regions

and darker block diagonal regions in S′ as compared to the original S matrix.

The proposed visualization technique is quite powerful and versatile.

In figure 3.2(a) the chosen similarity behaves randomly. Consequently, no

strong visual difference between on- and off-diagonal regions can be perceived

with CLUSION in S′. It indicates clustering is ineffective which is expected

since there is no structure in the similarity matrix. Figure 3.2(b) is based on

data consisting of pair-wise almost equi-distant singletons. Clustering into two

groups still renders the on-diagonal regions very bright suggesting more splits.

In fact, this will remain unchanged until each data-point is a cluster by itself,

thus, revealing the singleton character of the data. For monolithic data (figure

3.2(c)), many strong similarities are indicated by an almost uniformly dark

similarity matrix S. Splitting the data results in dark off-diagonal regions in

S′. A dark off-diagonal region suggests that the clusters in the corresponding

rows and columns should be merged (or not be split in the first place). CLU-

SION indicates that this data is actually one large cluster. In figure 3.2(d),

the gray-level distribution of S exposes bright as well as dark pixels, thereby

recommending it should be split. In this case, k = 2 apparently is a very good

choice (and the clustering algorithm worked well) because in S′ on-diagonal

regions are uniformly dark and off-diagonal regions are uniformly bright.

This induces an intuitive mining process that guides the user to the

‘right’ number of clusters. Too small a k leaves the on-diagonal regions inho-

mogeneous. On the contrary, growing k beyond the natural number of clusters

will introduce dark off-diagonal regions. Finally, CLUSION can be used to vi-

sually compare the appropriateness of different similarity measures. Let us

assume, for example, that each row in figure 3.2 illustrates a particular way of
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(a)

Parallel Axis PCA Projection CViz Projection CLUSION

(b)

Figure 3.3: Comparison of cluster visualization techniques. All tools work well
on the 4-dimensional IRIS data (a). But on the 2903-dimensional YAHOO news
document data (b), only CLUSION reveals that clusters 1 and 2 are actually
highly related, cluster 3 is strong and interdisciplinary, 4 is weak, and 5 is
strong.

defining similarity for the same data-set. Then, CLUSION makes visually ap-

parent that the similarity measure in (d) lends itself much better for clustering

than the measures illustrated in rows (a), (b), and (c).

3.4.3 Comparison

CLUSION gives a relationship-centered view, as contrasted with common pro-

jective techniques, such as the selection of dominant features or optimal linear

projections (PCA), which are object-centered. In CLUSION, the actual fea-

tures are transparent, instead, all pair-wise relationships, the relevant aspect

for the purpose of clustering, are displayed.

Figure 3.3 compares CLUSION with some other popular visualizations.
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In figure 3.3(a) parallel axis, PCA projection, CViz (projection through plane

defined by centroids of clusters 1, 2, and 3) as well as CLUSION succeed in

visualizing the IRIS data (see also appendix A.2). Membership in cluster 1

/ 2 / 3 is indicated by colors red / blue / green (parallel axis), colors red /

blue / green and shapes ◦/×/+ (PCA and CViz), and position on diagonal

from upper left to lower right corner (CLUSION), respectively. All four tools

succeed in visualizing three clusters and making apparent that clusters 2 and

3 are closer than any other and cluster 1 is very compact.

Figure 3.3(b) shows the same comparison for 293 documents from which

2903 word frequencies where extracted to be used as features. In fact this

data consists of 5 clusters selected from 40 clusters extracted from a Yahoo!

news document collection which will be described in more detail in subsection

3.5.2 (YAHOO). The colors black / magenta and the shapes ¤ / ∗ have been

added to indicate cluster 4 / 5, respectively. The parallel axis plot becomes

useless clutter due to the high number of dimensions as well as the large

number of objects. PCA and CViz succeed in separating three clusters each

(2, 3, 5 and 1, 2, 3, respectively) and show all others superimposed on the

axis origin. They give no suggestions towards which clusters are compact or

which clusters are related. Only CLUSION suggests that clusters 1 and 2 are

actually highly related, cluster 3 is interdisciplinary, 4 is weak, and 5 is a strong

cluster. And indeed, when looking at the cluster descriptions (which might

not be so easily available and understandable in all domains), the intuitive

interpretations revealed by CLUSION are proven to be very true:
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cluster dominant category purity entropy most frequent word stems

1 health (H) 100% 0.00 hiv, depress, immun

2 health (H) 100% 0.00 weight, infant, babi

3 online (o) 58% 0.43 apple, intel, electron

4 film (f) 38% 0.72 hbo, ali, alan

5 television (t) 83% 0.26 household, sitcom, timeslot

Note that the majority category, purity, and entropy are only available where

a supervised categorization is given. Of course the categorization cannot be

used to tune the clustering. Clusters 1 and 2 contains only documents from the

Health category so they are highly related. The 4th cluster, which is indicated

to be weak by CLUSION, has in fact the lowest purity in the group with 38% of

documents from the most dominant category (film). CLUSION also suggests

cluster 3 is not only strong, as indicated by the dark diagonal region, but also

has distinctly above average relationships to all other 4 clusters. On inspecting

the word stems typifying this cluster (Apple, Intel, and electron(ics)) it is

apparent that this is because of the interdisciplinary appearance of technology

savvy words in recent news releases. Since such cluster descriptions might not

be so easily available or well understood in all domains, the intuitive display

of CLUSION is very useful.

CLUSION has several other powerful properties. For example, it can

be integrated with product hierarchies (meta-data) to provide simultaneous

customer and product clustering, as well as multi-level views / summaries. It

also has a graphical user interface so one can interactively browse / split /

merge a data-set which is of great help to speed-up the iterations of analysis
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during a data mining project.

3.5 Experiments

3.5.1 Retail Market-basket Clusters

First, we will show clusters in a real retail transaction database of 21672 cus-

tomers of a drugstore4. For the purpose of the experiments in this chap-

ter, we randomly selected 2500 customers. The total number of transactions

(cash register scans) for these customers is 33814 over a time interval of three

months. We rolled up the product hierarchy once to obtain 1236 different

products purchased. 15% of the total revenue is contributed by the single

item Financial-Depts (on site financial services such as check cashing and

bill payment) which was removed because it was too common. 473 of these

products accounted for less than $25 each in toto and were dropped. The

remaining n = 2466 customers (34 customers had empty baskets after remov-

ing the irrelevant products) with their d = 762 features compose the RETAIL

data-set. Appendix A.4 gives exemplary transactions and illustrates Zipf-like

distributions found in the data. The customers in RETAIL were clustered using

OPOSSUM. The extended price was used as the feature entries to represent

purchased quantity weighted according to price.

In this customer clustering case study we set k = 20. In this application

domain, the number of clusters is often predetermined by marketing consider-

ations such as advertising industry standards, marketing budgets, marketers

ability to handle multiple groups, and the cost of personalization. In general,

4provided by Knowledge Discovery 1
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a reasonable value of k can be obtained using heuristics (subsection 3.3.3).

OPOSSUM’s results for this example are obtained with a 1.7 GHz Pen-

tium 4 PC with 512 MB RAM in approximately 35 seconds (∼30s file I/O, 2.5s

similarity computation, 0.5s conversion to integer weighted graph, 0.5s graph

partitioning). Figures 3.4 and 3.5 show the extended Jaccard similarity ma-

trix (83% sparse) using CLUSION in six scenarios: 3.4(a) original (randomly)

ordered matrix, 3.4(b) seriated using Euclidean k-means, 3.4(c) using SOM,

3.4(d) using standard Jaccard k-means, 3.5(a) using extended Jaccard sample

balanced OPOSSUM, 3.5(b) using value balanced OPOSSUM clustering. Cus-

tomer and revenue ranges are given below each image. In figure 3.4(a), (b),

(c), and (d) clusters are neither compact nor balanced. In figure 3.5(a) and (b)

clusters are much more compact, even though there is the additional constraint

that they be balanced, based on equal number of customers and equal revenue

metrics, respectively. Below each CLUSION visualization, the ranges of num-

bers of customers and revenue totals in $ amongst the 20 cluster are given to

indicate balancedness. We also experimented with minimum distance agglom-

erative clustering but this resulted in 19 singletons and 1 cluster with 2447

customers so we did not bother including this approach. Clearly, k-means in

the original feature space, the standard clustering algorithm, does not perform

well at all (figure 3.4(b)). The SOM after 100000 epochs performs slightly bet-

ter (figure 3.4(c)) but is outperformed by the standard Jaccard k-means (figure

3.4(d)) which is adopted to similarity space by using
√

− log(s(J)) as distances

(see chapter 4). As the relationship-based CLUSION shows, OPOSSUM (fig-

ure 3.5(a),(b)) gives more compact (better separation of on- and off-diagonal

regions) and well balanced clusters as compared to all other techniques. For

example, looking at standard Jaccard k-means, the clusters contain between
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48 and 597 customers contributing between $608 and $70443 to revenue5.

Thus the clusters may not be of comparable importance from a marketing

standpoint. Moreover clusters are hardly compact: Darkness is only slightly

stronger in the on-diagonal regions in figure 3.4(d). All visualizations have

been histogram equalized for printing purposes. However, they are still much

better observed by browsing interactively on a computer screen.

A very compact and useful way of profiling a cluster is to look at their

most descriptive and their most discriminative features. For market-basket

data, this can be done by looking at a cluster’s highest revenue products and

the most unusual revenue drivers (e.g., products with highest revenue lift).

Revenue lift is the ratio of the average spending on a product in a particular

cluster to the average spending in the entire data-set.

In table 3.1 the top three descriptive and discriminative products for the

customers in the 20 value balanced clusters are shown (see also figure 3.5(b)).

Customers in cluster C2, for example, mostly spent their money on smoking

cessation gum ($10.15 on average). Interestingly, while this is a 35-fold average

spending on smoking cessation gum, these customers also spend 35 times more

on blood pressure related items, peanuts and snacks. Do these customers lead

an unhealthy lifestyle and are eager to change? Cluster C15, which can be seen

to be highly compact cluster of Christmas shoppers characterized by greeting

card and candy purchases. Note that OPOSSUM had an extra constraint that

clusters should be of comparable value. This may force a larger natural cluster

to split, as may be the case causing the similar clusters C9 and C10. Both are

Christmas gift shoppers (table 3.1(top)), cluster C9 are the moderate spenders

5The solution for k-means depends on the initial choices for the means. A representative
solution is shown here.
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(a) 2466 customers, $126899 revenue (b) [$1 - $1645], [$52 - $78480]

(c) [4 - 978], [$1261 - $12162] (d) [48 - 597], [$608 - $70443]

Figure 3.4: Visualizing partitioning drugstore customers from RETAIL data-
set into 20 clusters. Relationship visualizations using CLUSION: (a) original
(randomly) ordered similarity matrix, (b) seriated or partially reordered us-
ing Euclidean k-means, (c) using SOM, (d) using standard Jaccard k-means.
Customer and revenue ranges are given below each image. See also figure 3.5.
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(a) [122 - 125], [$1624 - $14361] (b) [28 - 203], [$6187 - $6609]

Figure 3.5: Visualizing partitioning drugstore customers from RETAIL data-set
into 20 clusters. Relationship visualizations using CLUSION: (a) using ex-
tended Jaccard sample balanced OPOSSUM, (b) using value balanced OPOS-
SUM clustering. Customer and revenue ranges are given below each image.
In figure 3.4(a), (b), (c), and (d) clusters are neither compact nor balanced.
In figure 3.5(a) and (b) clusters are much more compact, even thoughthere
is the additional constraint that they be balanced, based on equal number of
customers and equal revenue metrics, respectively.
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Cℓ top product $ lift sec. product $ lift third product $ lift
1 bath gift packs 3.44 7.69 hair growth m 0.90 9.73 boutique island 0.81 2.61
2 smoking cessati 10.15 34.73 tp canning item 2.04 18.74 blood pressure 1.69 34.73
3 vitamins other 3.56 12.57 tp coffee maker 1.46 10.90 underpads hea 1.31 16.52
4 games items 180 3.10 7.32 facial moisturi 1.80 6.04 tp wine jug ite 1.25 8.01
5 batt alkaline i 4.37 7.27 appliances item 3.65 11.99 appliances appl 2.00 9.12
6 christmas light 8.11 12.22 appliances hair 1.61 7.23 tp toaster/oven 0.67 4.03
7 christmas food 3.42 7.35 christmas cards 1.99 6.19 cold bronchial 1.91 12.02
8 girl toys/dolls 4.13 12.51 boy toys items 3.42 8.20 everyday girls 1.85 6.46
9 christmas giftw 12.51 12.99 christmas home 1.24 3.92 christmas food 0.97 2.07

10 christmas giftw 19.94 20.71 christmas light 5.63 8.49 pers cd player 4.28 70.46
11 tp laundry soap 1.20 5.17 facial cleanser 1.11 4.15 hand&body thera 0.76 5.55
12 film cameras it 1.64 5.20 planners/calend 0.94 5.02 antacid h2 bloc 0.69 3.85
13 tools/accessori 4.46 11.17 binders items 2 3.59 10.16 drawing supplie 1.96 7.71
14 american greeti 4.42 5.34 paperback items 2.69 11.04 fragrances op 2.66 12.27
15 american greeti 5.56 6.72 christmas cards 0.45 2.12 basket candy it 0.44 1.45
16 tp seasonal boo 10.78 15.49 american greeti 0.98 1.18 valentine box c 0.71 4.08
17 vitamins e item 1.76 6.79 group stationer 1.01 11.55 tp seasonal boo 0.99 1.42
18 halloween bag c 2.11 6.06 basket candy it 1.23 4.07 cold cold items 1.17 4.24
19 hair clr perman 12.00 16.76 american greeti 1.11 1.34 revlon cls face 0.83 3.07
20 revlon cls face 7.05 26.06 hair clr perman 4.14 5.77 headache ibupro 2.37 12.65

Cℓ top product $ lift sec. product $ lift third product $ lift
1 action items 30 0.26 15.13 tp video comedy 0.19 15.13 family items 30 0.14 11.41
2 smoking cessati 10.15 34.73 blood pressure 1.69 34.73 snacks/pnts nut 0.44 34.73
3 underpads hea 1.31 16.52 miscellaneous k 0.53 15.59 tp irons items 0.47 14.28
4 acrylics/gels/w 0.19 11.22 tp exercise ite 0.15 11.20 dental applianc 0.81 9.50
5 appliances item 3.65 11.99 housewares peg 0.13 9.92 tp tarps items 0.22 9.58
6 multiples packs 0.17 13.87 christmas light 8.11 12.22 tv’s items 6 0.44 8.32
7 sleep aids item 0.31 14.61 kava kava items 0.51 14.21 tp beer super p 0.14 12.44
8 batt rechargeab 0.34 21.82 tp razors items 0.28 21.82 tp metal cookwa 0.39 12.77
9 tp furniture it 0.45 22.42 tp art&craft al 0.19 13.77 tp family plan, 0.15 13.76

10 pers cd player 4.28 70.46 tp plumbing ite 1.71 56.24 umbrellas adult 0.89 48.92
11 cat litter scoo 0.10 8.70 child acetamino 0.12 7.25 pro treatment i 0.07 6.78
12 heaters items 8 0.16 12.91 laverdiere ca 0.14 10.49 ginseng items 4 0.20 6.10
13 mop/broom lint 0.17 13.73 halloween cards 0.30 12.39 tools/accessori 4.46 11.17
14 dental repair k 0.80 38.17 tp lawn seed it 0.44 35.88 tp telephones/a 2.20 31.73
15 gift boxes item 0.10 8.18 hearing aid bat 0.08 7.25 american greeti 5.56 6.72
16 economy diapers 0.21 17.50 tp seasonal boo 10.78 15.49 girls socks ite 0.16 12.20
17 tp wine 1.5l va 0.17 15.91 group stationer 1.01 11.55 stereos items 2 0.13 10.61
18 tp med oint liq 0.10 8.22 tp dinnerware i 0.32 7.70 tp bath towels 0.12 7.28
19 hair clr perman 12.00 16.76 covergirl imple 0.14 11.83 tp power tools 0.25 10.89
20 revlon cls face 7.05 26.06 telephones cord 0.56 25.92 ardell lashes i 0.59 21.87

Table 3.1: List of descriptive (top) and discriminative products (bottom) dom-
inant in each of the 20 value balanced clusters obtained from the RETAIL data
(see also figure 3.5(b)). For each item the average amount of $ spent in this
cluster and the corresponding lift is given.
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and cluster C10 are the big spenders, as cluster C10 is much smaller with equal

revenue contribution (figure 3.5(b)). Our hunch is reinforced by looking at

figure 3.5(b).

3.5.2 Web-document Clusters

In this subsection, we present results on documents from the Yahoo! news

section. Each of the 2340 documents is characterized by a bag-of-words. The

data is publicly available from ftp://ftp.cs.umn.edu/dept/users/boley/

(K1 series) and was used in [BGG+99, SGM00]. The 20 original Yahoo! news

categories are Business (B), Entertainment (no sub-category (E), art (a),

cable (c), culture (cu), film (f), industry (i), media (m), multimedia

(mm), music (mu), online (o), people (p), review (r), stage (s), television

(t), variety (v)), Health (H), Politics (P), Sports (S), Technology (T)

and correspond to the category labels 1,. . . ,20, respectively. The raw 21839 ×
2340 word-by-document matrix consists of the non-normalized occurrence fre-

quencies of stemmed words, using Porter’s suffix stripping algorithm [Fra92].

Pruning all words that occur less than 0.01 or more than 0.10 times on average

because they are insignificant (e.g., haruspex) or too generic (e.g., new), re-

spectively, results in d = 2903. We call this data-set YAHOO (see also appendix

A.5).

Let us point out some worthwhile differences between clustering market-

baskets and documents. Firstly, discrimination of vector length is no longer

desired since customer life-time value matters but document length does not.

Consequently, we use cosine similarity s(C) instead of extended Jaccard simi-

larity s(J). Also, in document clustering we are less concerned about balancing,
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since there are usually no direct monetary costs of the actions derived from

the clustering involved. As a consequence of this, we over-cluster first with

sample-balanced OPOSSUM and then allow user guided merging of clusters

through CLUSION. The YAHOO data-set is notorious for having some diffuse

groups with overlaps among categories, a few categories with multi-modal dis-

tributions, etc. These aspects can be easily explored by looking at the class

labels within each cluster, merging some clusters and then again visualizing

the results.

Figure 3.6 shows clusterings with three settings of k. For k = 10 (figure

3.6(a)) most clusters are not dense enough, despite the fact that the first two

clusters already seem like they should not have been split. After increasing to

k = 40 (figure 3.6(b)), CLUSION indicates that the clustering now has suffi-

ciently compact clusters. Now, we successively merge pairs of highly related

clusters until we obtain our final clustering with k = 20 (figure 3.6(c)). The

merging process is guided by inter-cluster similarity (e.g., bright off-diagonal

regions) augmented by cluster-descriptions (e.g., related frequent words). In

fact, in our graphical user interface of CLUSION merging is as easy as clicking

on a selected off-diagonal region.

Table 3.2(top) shows cluster evaluations, their descriptive and discrimi-

native word stems. Each cluster (Cℓ) is evaluated using the dominant category

(Kĥ), purity (φ(A)), and entropy (φ(B)). Let n
(h)
ℓ denote the number of objects

in cluster Cℓ that are classified to be in category h as given by the original

Yahoo! categorization. Cluster Cℓ’s purity can be defined as

φ(A)(Cℓ) =
1

nℓ

max
h

(n
(h)
ℓ ). (3.9)

Purity can be interpreted as the classification rate under the assumption that
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(a) (b)

(c)

Figure 3.6: Comparison of various number of clusters k for YAHOO news data:
(a) under-clustering at k = 10, (b) over-clustering at k = 40, (c) good cluster-
ing through interactive split and merge using CLUSION at k = 20. See color
pictures in soft-copy for cluster boundaries.
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Cℓ K
ĥ

φ(A) φ(B)

1 P 21.05% 0.73
2 H 91.48% 0.15
3 S 68.39% 0.40
4 P 52.84% 0.60
5 T 63.79% 0.39
6 o 57.63% 0.40
7 B 60.23% 0.48
8 f 37.93% 0.66
9 cu 50.85% 0.48

10 p 36.21% 0.56
11 f 67.80% 0.33
12 f 77.59% 0.31
13 r 47.28% 0.56
14 mu 44.07% 0.56
15 p 50.00% 0.50
16 mu 18.97% 0.71
17 p 55.08% 0.54
18 t 82.76% 0.24
19 f 38.79% 0.58
20 f 69.49% 0.36

top 3 descriptive terms
israel, teeth, dental
breast, smok, surgeri
smith, player, coach
republ, committe, reform
java, sun, card
apple, intel, electron
cent, quarter, rose
hbo, ali, alan
bestsell, weekli, hardcov
albert, nomin, winner
miramax, chri, novel
cast, shoot, indie
showbiz, sound, band
concert, artist, miami
notabl, venic, classic
fashion, sold, bbc
funer, crash, royal
househ, sitcom, timeslot
king, japanes, movi
weekend, ticket, gross

top 3 discriminative terms
mckinnei, prostat, weizman
symptom, protein, vitamin
hingi, touchdown, rodman
icke, veto, teamster
nader, wireless, lucent
pentium, ibm, compaq
dow, ahmanson, greenspan
phillip, lange, wendi
hardcov, chicken, bestsell
forcibl, meredith, sportscast
cusack, cameron, man
juliett, showtim, cast
dialogu, prodigi, submiss
bing, calla, goethe
stamp, skelton, espn
poetri, versac, worn
spencer, funer, manslaught
timeslot, slot, household
denot, winfrei, atop
weekend, gross, mimic

B E a c cu f i m mm mu o p r s t v H P S T
7 106 1 - 4 2 - 30 6 - 4 2 1 - - 5 2 - 2 - 11
9 - - - 3 30 17 - - 1 1 2 2 1 - 1 1 - - - -
8 - - 1 7 - 22 2 - - 3 1 5 8 1 5 2 - - 1 -

11 - - - 1 - 40 1 - - - - 1 2 - 1 13 - - - -
12 - - - 2 - 45 - - - - - 2 1 2 4 2 - - - -
19 - 1 - 3 1 45 1 - - 8 - 15 2 - 25 14 - - 1 -
20 - 1 1 - - 41 - - - 4 - - - 5 6 1 - - - -
14 - 2 8 - 4 2 - - - 26 1 12 - 2 1 - - 1 - -
16 - 1 4 1 9 9 2 2 1 11 - 11 - - 6 - - 1 - -
6 8 - - - - - 1 - 3 - 34 - - - - 1 - - - 12

10 - - - 3 1 4 - - 2 2 1 21 2 - 20 2 - - - -
15 - - 2 1 5 13 - - - 4 2 29 - - 2 - - - - -
17 - 1 - 2 6 5 1 6 - 12 1 65 3 - 12 4 - - - -
13 - - 1 1 9 22 6 1 3 33 9 58 139 7 2 3 - - - -
18 - - 1 2 - 1 - - - - - 2 - - 48 4 - - - -
2 2 - - 2 1 1 1 - 1 1 3 5 - - 6 - 483 5 17 -
1 3 2 2 1 - 4 - 1 - 4 - 10 - - 5 - 11 12 2 -
4 14 - 4 7 5 2 15 5 - 6 3 6 - 1 12 2 - 93 1 -
3 1 - - 1 1 5 10 - 3 5 - 3 - - 23 3 - - 119 -
5 8 - - 3 - - - - - 1 6 - - - 3 - - - - 37

Table 3.2: Cluster evaluations, their descriptive and discriminative terms (top)
as well as the confusion matrix (bottom) for the YAHOO news example (see also
figure 3.6(c)). For each cluster number Cℓ the dominant category Kĥ, purity
φ(A), and entropy φ(B) are shown.
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all samples of a cluster are predicted to be members of the actual dominant

class for that cluster. Alternatively, we also use [0,1]-normalized entropy, which

is defined for a problem with g categories as

φ(B)(Cℓ) = −
g

∑

h=1

n
(h)
ℓ

nℓ

logg

(

n
(h)
ℓ

nℓ

)

. (3.10)

Entropy is a more comprehensive measure than purity since rather than just

considering the number of objects ‘in’ and ‘not in’ the most frequent category,

it considers the entire distribution. Table 3.2(bottom) gives the complete

confusion matrix, which indicates how clusters and categories are related. Note

that neither category nor prior distribution information is used during the

unsupervised clustering process. In fact, the clustering is very good. It is much

better than the original categorization in terms of edge cut and similarity lift,

and it provides a much better grouping when only word frequencies are looked

at. The evaluation metrics serve the purpose of validating our results capture

relevant categorizations. However, their importance for our purpose is limited

since we are solving a clustering problem and not a classification problem.

The largest and best cluster is cluster C2 with 483 out of 528 documents being

from the health cluster. Health related documents show a very distinct set of

words and can, hence, be nicely separated. Small and not well distinguished

categories have been put together with other documents (For example, the arts

category has mostly been absorbed by the music category to form clusters 14

and 16.). This is inevitable since the 20 categories vary widely in size from

9 to 494 documents while the clusters OPOSSUM provides are much more

balanced (from 58 to 528 documents per cluster).
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3.5.3 Web-log Session Clusters

Web-portals and other e-commerce sites often segment their visitors to pro-

vide better personalized services. When a web-page is requested, the server

log records the user’s IP address, the URL retrieved, access time, etc. These

logs can be analyzed to segment visitors based on their ‘cow-path’ or trajec-

tory through the website, as described by the sequence of pages visited, page

contents, time spent on each page, etc.

In a recent work, the use of a weighted Longest Common Subsequence

(LCS) [BG01] similarity metric to describe how similar two trajectories are was

suggested. This metric determines the LCS of the two trajectories, and then

scales it by what fraction of the total visit time is spent in the longest common

subsequence. Alternatively, one can use a vector-space model, wherein entries

in the data matrix X indicate time spent in a particular session (column) on

a particular page (row).

In this subsection, we present results of OPOSSUM and CLUSION for

the data presented in [BG01]. We randomly selected 3000 sessions (out of

23310) from a community portal, http://www.sulekha.com/. The index /

root page of the web-portal was removed since it was visited by almost every-

one for a considerable amount of time and, hence, provided no discriminatory

information. Figure 3.7 compares results for a vector-space-based approach

using cosine similarity with LCS. The cosine measure shows some large dark

diagonal regions indicating compact clusters of sessions, but it turns out that

these clusters are sessions where the majority of the time was spent on a cate-

gory index page (level 2 on the portal’s site map). The LCS is able to capture a

larger percentage of the total similarity (amount of ‘grayness’) in the diagonal
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Figure 3.7: Web-log session clustering using a vector space model and cosine
similarity (a) versus using weighted longest common sub-sequence similarity
(b). The cosine similarity is far less sparse and is dominated by major category
index pages, while the LCS shows better isolation among the clusters.

regions, showing a better and more balanced grouping. Such visualization can

be used to select the appropriate similarity measure for a given clustering ob-

jective, and to evaluate the overall clustering quality. For example, CLUSION

shows that clustering visitors into 20 groups was successful despite the extreme

sparsity (∼1%) in figure 3.7(b). We also used value-balanced OPOSSUM to

cluster web-log sessions which yields clusters with comparable total web-surfer

exposure time. These clusters might be particularly useful for new formats in

target advertising campaigns. It simplifies advertising campaign management

by enabling the portal to offer fixed prizes for ad delivery exposure to each

cluster since they represent comparable attention times.
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3.6 System Issues

3.6.1 Synergy between OPOSSUM and CLUSION

The visualization and clustering techniques presented in this work need to

be considered together and not in isolation. This is because CLUSION is

particularly suited to viewing the output of OPOSSUM. First, the similarity

matrix is already computed during the clustering step, so no extra computation

is needed, except for permuting this matrix, which can be done in O(n) since

the size and seriation order of each partition is known. Second, since METIS

involves boundary Kernighan-Lin refinement, clusters that are similar appear

closer in the seriation order. Thus it is no coincidence that clusters C1 and C2

appear contiguous in figure 3.6(a). Finally, one can experiment with different

similarity measures for OPOSSUM and quickly get visual feedback regarding

their effectiveness using CLUSION (figure 3.7).

3.6.2 FASTOPOSSUM

Since OPOSSUM aims to achieve balanced clusters, random sampling is ef-

fective for obtaining adequate examples of each cluster. If the clusters are

perfectly balanced, the distribution of the number of samples from a specific

cluster in a subsample of size n taken from the entire population is binomial

with mean n/k and variance n(k − 1)/k2. For finite population, the variance

will be even less. Thus, if we require at least r representatives from this clus-

ter, then the number of samples is given by: n/k ≥ zα

√

n(k − 1) + r, where

zα = 1.96 or 2.81 for 97.5% and 99.5% confidence levels respectively. This

is O(rk). For example, if we have 10 clusters and need to ensure at least 20
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representatives from a given cluster with probability 0.995, about 400 samples

are adequate. Note that this number is independent of n if n is adequately

large (at least 400 in this case), so even for over one million customers, only

400 representatives are required.

This suggests a simple and effective way to scale OPOSSUM to very

large number of objects n, using the following four-step process called FASTO-

POSSUM:

1. Pick a boot-sample of size n so that the corresponding r value is adequate

to define each cluster.

2. Apply OPOSSUM to the boot-sample to get k initial clusters.

3. Find the centroid for each of the k clusters.

4. Assign each of the remaining n−n points to the cluster with the nearest

centroid.

Using n =
√

n reduces the complexity of FASTOPOSSUM to O(kn). Note

that the above algorithm may not result in balanced clusters. We can en-

force balancing by allocating the remaining points to the k clusters in groups,

each time solving a stable marriage problem [GI89], but this will increase the

computation time.

Figure 3.8 illustrates the behavior of FASTOPOSSUM for the drugstore

customer data-set from subsection 3.5.1. The remaining edge weight fraction

indicates how much of the cumulative edge weight remains after the edge sepa-

rator has been removed:
∑k

ℓ=1

∑
λa=ℓ

∑
λb=ℓ,b>a s(xa,xb)

∑n
a=1

∑n
b=a+1 s(xa,xb)

The better the partitioning,

the smaller the edge-separator, and thus the larger the remaining edge weight

fraction. Surprisingly the speedup does not result in a significant decreased
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Figure 3.8: Effect of sub-sampling on OPOSSUM. Cluster quality as measured
by remaining edge weight fraction (a) and imbalance (b) of total graph with
2466 vertices (customers from subsection 3.5.1) for various boot-sample sizes in
FASTOPOSSUM. For each setting the results’ range and mean of 10 trials are
depicted. Using all 2466 customers as the boot-sample (i.e., no sub-sampling)
results in balancing within the 1.05 imbalance requirement and approximately
40% of edge weight remaining (as compared to 5% baseline for random clus-
tering). As the boot-sample becomes smaller the remaining edge weight stays
approximately the same (a), however the imbalance increases (b).

quality in terms of remaining edge weight (figure 3.8(a)). However, the bal-

ancing property is progressively relaxed as the boot-sample becomes smaller

in comparison to the full data-set (figure 3.8(b)). Using n = 100 initial points

reduces the original computation time to less than 1% at comparable remain-

ing edge weight but at an imbalance of 3.5 in the worst of 10 random trials.

These results indicate that scaling to large n is easily possible, if one is willing

to relax the balancedness constraints.
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3.6.3 Parallel Implementation

Another notion of scalability is w.r.t. the number of processors (speedup, iso-

efficiency, etc.). Our analysis [SG00b] shows almost linear speedup for our

method, as the similarity computation as well as graph partitioning can both

be fairly trivially parallelized with little overhead. Parallel implementation of

the all-pair similarity computation on SIMD or distributed memory processors

is trivial. It can be done in a systolic or block systolic manner with essentially

no overhead. Frameworks such as MPI also provide native primitives for such

computations. Parallelization of METIS is also very efficient, and [SKK99],

reports partitioning of graphs with over 7 million vertices in 7 seconds into

128 clusters on a 128 processor Cray T3E. For further details, see [SG00b].

3.7 Summary

A recent poll (June 2001) by KDNuggets (http://www.kdnuggets.com/) in-

dicated that clustering was by far the most popular type of analysis in the last

12 months at 22% (followed by direct marketing at 14% and cross-sell mod-

els at 12%). The clustering process is characterized by extensive explorative

periods where better domain understanding is gained. Often, in this itera-

tive process the crucially important definitions of features and/or similarity

are refined. The visualization toolkit CLUSION allows even non-specialists to

get an intuitive visual impression of the grouping nature of objects that may

be originally defined in a high-dimensional space. Taking CLUSION from a

post-processing step into the loop can significantly accelerate the process of

discovering domain knowledge, as it provides a powerful visual aid for assess-
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ing and improving clustering. For example, actionable recommendations for

splitting or merging of clusters can be easily derived and readily applied via

a point-and-click user interface, and different similarity metrics can be com-

pared visually. It also guides the user towards the ‘right’ number of clusters.

A demo of this tool can be found at http://strehl.com/.

This chapter originally stemmed from our encounter with several retail

data-sets, where even after substantial pre-processing we were left with records

with over 1000 attributes, and further attempts to reduce the number of at-

tributes by selection/projection led to loss of vital information. Relationship-

based clustering provides one way out by transforming the data to another

space (in time linear in the number of dimensions) where the high dimension-

ality gets ‘hidden’, since once similarity is computed, the original dimensions

are not encountered again. This suggests a connection of our approach with

kernel-based methods, such as support vector machines, that are currently

very popular for classification problems [Vap95, Joa98]. A kernel function of

two vectors is a generalized inner product between the corresponding map-

pings of these vectors into a derived (and typically very high dimensional)

feature space. Thus one can view it as a similarity measure between the two

original vectors. It will be worthwhile to further investigate this connection

for a variety of applications [JH99].

The clustering algorithm presented in this chapter is largely geared to-

wards the needs of segmenting transactional data, with provision of getting

balanced clusters and for selecting the quantity (revenue, margins) of interest

to influence the grouping. Thus, rather than evaluating business objectives

(such as revenue contribution) after clustering is done, they are directly in-

tegrated into the clustering algorithm. Moreover, it is a natural fit with the
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visualization algorithm. Also, it can be extended to other domains, as il-

lustrated by our results on document clustering and grouping web-logs. We

also examined several ways of scaling the clustering routine to a large number

of data points, and elaborated on one approach that is able to use sampling

effectively because of the balanced nature of the desired clusters.
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Chapter 4

Impact of Similarity Measures

I have had my results for a long time: but I do not yet

know how I am to arrive at them.

– Karl Friedrich Gauß1

In the last chapter, we explored the relationship-based approach to clus-

tering in several domains. The work was initially motivated by retail data and

extended naturally to other domains where high-dimensional representations

are prevalent, such as text documents and web-logs. A particularly interesting

application is clustering of text documents which enables unsupervised cate-

gorization and facilitates browsing and search. A critical step in adapting a

relationship-based clustering to a specific domain is the choice of similarity

measure. In this chapter, we investigate the impact of similarity measures on

clustering quality. We will first introduce similarities and algorithms for text

clustering, then develop a general comparative framework and, finally, conduct

case studies on a variety of text corpora.

1Quoted in A. Arber, The Mind and the Eye, 1954
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4.1 Motivation

Document clusters can provide a structure for organizing large bodies of text

for efficient browsing and searching. For example, recent advances in Internet

search engines (e.g., http://vivisimo.com/, http://metacrawler.com/) ex-

ploit document cluster analysis. For this purpose, a document is commonly

represented as a vector consisting of the suitably normalized frequency counts

of words or terms. Each document typically contains only a small percentage

of all the words ever used. If we consider each document as a multi-dimensional

vector and then try to cluster documents based on their word contents, the

problem differs from classic clustering scenarios in several ways: Document

data is high-dimensional2, characterized by a very sparse term-document ma-

trix with positive ordinal attribute values and a significant amount of outliers.

In such situations, one is truly faced with the ‘curse of dimensionality’ issue

[Fri94] since, even after feature reduction, one is left with hundreds of dimen-

sions per object.

In the previous chapter, we developed the relationship-clustering frame-

work to effectively side-step the ‘curse of dimensionality’. In the relationship-

based clustering process, key cluster analysis activities [JD88] can be associ-

ated with each step:

1. To obtain features X ∈ F from the raw objects, a suitable object rep-

resentation has to be found. We will not be concerned with representa-

tion in this chapter, since the significant amount of empirical studies on

document clustering in the 80s and earlier emphasized various ways of

2The dimension of a document in vector space representation is the size of the vocabulary,
often in the tens of thousands.
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representing / normalizing documents [Wil88, SB88, Sal89].

2. In the second step, a measure of proximity S ∈ S has to be defined

between objects. The choice of similarity or distance can have a profound

impact on clustering quality. In this chapter, we first compare similarity

measures analytically and then illustrate their semantics geometrically.

3. The third activity requires a suitable choice of clustering algorithm to

obtain cluster labels λ ∈ O. Agglomerative clustering approaches were

historically dominant as they compared favorably with flat partitional

approaches on small or medium sized collections [Wil88, Ras92]. But

lately, some new partitional methods have emerged (spherical k-means,

graph partitioning-based, etc.) that have attractive properties in terms

of both quality and scalability and can work with a wider range of simi-

larity measures. In addition, much larger document collections are being

generated.3 This warrants an updated comparative study on text clus-

tering, which is the motivation behind this chapter.

4. Finally, in the assessment of output one has to investigate the validity of

the results.4 In this chapter, we propose an experimental methodology

to compare high-dimensional clusterings based on mutual information

and we show how this is better than purity or entropy-based measures

[BGG+99, ZK01, SKK00]. Finally, we conduct a series of experiments

to evaluate the performance and cluster quality of four similarity mea-

sures (Euclidean, cosine, Pearson correlation, extended Jaccard) in com-

3IBM Patent Server has over 20 million patents. Lexis-Nexis contains over 1 billion
documents

4Often, data abstraction has to performed between clustering and final assessment [JD88].
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bination with five algorithms (random, self-organizing map, hypergraph

partitioning, generalized k-means, weighted graph partitioning).

Some very recent, notable comparative studies on document clustering

[SKK00, ZK01] also consider some of the newer issues. Our work is distin-

guished from these efforts mainly by its focus on the key role of the similarity

measures involved, emphasis on balancing, and the use of a normalized mutual

information-based evaluation that we believe has superior properties.

The basic notation is the same as introduced in the previous chapter

in section 3.2. In the next section, we introduce several similarity measures,

illustrate some of their properties, and show why we are interested in some

but not others. In section 4.3, the algorithms using these similarity measures

are discussed. Section 4.4 introduces a variety of cluster quality evaluation

methods including our proposed mutual information criterion. Finally, the

experiments and results are shown in section 4.5.

4.2 Similarity Measures for Document Clus-

tering

4.2.1 Conversion from a Distance Metric

The Minkowski distances Lp(xa,xb) =
(

∑d
i=1 |xi,a − xi,b|p

)1/p

are the stan-

dard metrics for geometrical problems. For p = 2 we obtain the Euclidean

distance. There are several possibilities for converting such a distance metric

(in [0, inf), with 0 closest) into a similarity measure (in [0, 1], with 1 closest) by

a monotonic decreasing function. For Euclidean space, we chose to relate dis-
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tances d and similarities s using s = e−d2
. Consequently, we define Euclidean

[0,1]-normalized similarity as

s(E)(xa,xb) = e−‖xa−xb‖
2
2 (4.1)

which has important desirable properties (as we will see in the discussion)

that the more commonly adopted s(xa,xb) = 1/(1 + ‖xa − xb‖2) lacks. Other

distance functions can be used as well. The Mahalanobis distance normal-

izes the features using the covariance matrix. Due to the high-dimensional

nature of text data, covariance estimation is inaccurate and often computa-

tionally intractable, and normalization is done if need to be, at the document

representation stage itself, typically by applying TF-IDF.

4.2.2 Cosine Measure

A popular measure of similarity for text (which normalizes the features by the

covariance matrix) clustering is the cosine of the angle between two vectors.

The cosine measure is given by

s(C)(xa,xb) =
x†

axb

‖xa‖2 · ‖xb‖2

(4.2)

and captures a scale invariant understanding of similarity. An even stronger

property is that the cosine similarity does not depend on the length:

s(C)(αxa,xb) = s(C)(xa,xb) for α > 0. This allows documents with the same

composition, but different totals to be treated identically which makes this the

most popular measure for text documents. Also, due to this property, samples

can be normalized to the unit sphere for more efficient processing [DM01].
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4.2.3 Pearson Correlation

In collaborative filtering, correlation is often used to predict a feature from a

highly similar mentor group of objects whose features are known. The [0,1]-

normalized Pearson correlation is defined as

s(P)(xa,xb) =
1

2

(

(xa − x̄a)
†(xb − x̄b)

‖xa − x̄a‖2 · ‖xb − x̄b‖2

+ 1

)

, (4.3)

where x̄ denotes the average feature value of x over all dimensions. Note that

this definition of Pearson correlation tends to give a full matrix. Other impor-

tant correlations have been proposed, such as Spearman correlation [Spe06]

which works well on rank orders.

4.2.4 Extended Jaccard Similarity

The binary Jaccard coefficient measures the degree of overlap between two sets

and is computed as the ratio of the number of shared attributes (words) of xa

AND xb to the number possessed by xa OR xb. For example, given two sets’

binary indicator vectors xa = (0, 1, 1, 0)† and xb = (1, 1, 0, 0)†, the cardinality

of their intersect is 1 and the cardinality of their union is 3, rendering their

Jaccard coefficient 1/3. The binary Jaccard coefficient is often used in retail

market-basket applications. In chapter 3, we extended the binary definition

of Jaccard coefficient to continuous or discrete non-negative features. The

extended Jaccard is computed as

s(J)(xa,xb) =
x†

axb

‖xa‖2
2 + ‖xb‖2

2 − x†
axb

, (4.4)

which is equivalent to the binary version when the feature vector entries are

binary. Extended Jaccard similarity [SG00c] retains the sparsity property of
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the cosine while allowing discrimination of collinear vectors as we will show

in the following subsection. Another similarity measure highly related to the

extended Jaccard is the Dice coefficient (s(D)(xa,xb) = 2x†
axb

‖xa‖2
2+‖xb‖

2
2
). The Dice

coefficient can be obtained from the extended Jaccard coefficient by adding

x†
axb to both the numerator and denominator. It is omitted here since it

behaves very similar to the extended Jaccard coefficient.

4.2.5 Other (Dis-)Similarity Measures

Many other (dis-)similarity measures, such as mutual neighbor or edit distance,

are possible [JMF99]. In fact, the ugly duckling theorem states [Wat69] the

somewhat ‘unintuitive’ fact that there is no way to distinguish between two

different classes of objects, when they are compared over all possible features.

As a consequence, any two arbitrary objects are equally similar unless we

use domain knowledge. The similarity measures discussed above are the ones

deemed pertinent to text documents [Sal89, FBY92] in previous studies.

4.2.6 Discussion

Clearly, if clusters are to be meaningful, the similarity measure should be

invariant to transformations natural to the problem domain. Also, normaliza-

tion may strongly affect clustering in a positive or negative way. The features

have to be chosen carefully to be on comparable scales and similarity has to

reflect the underlying semantics for the given task.

Euclidean similarity is translation invariant but scale sensitive while

cosine is translation sensitive but scale invariant. The extended Jaccard has

aspects of both properties as illustrated in figure 4.1. Iso-similarity lines at
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s = 0.25, 0.5 and 0.75 for points x1 = (3, 1)† and x2 = (1, 2)† are shown for

Euclidean, cosine, and the extended Jaccard. For cosine similarity only the 4

(out of 12) lines that are in the positive quadrant are plotted: The two lines in

the lower right part are one of two lines from x1 at 0.5 and 0.75. The two lines

in the upper left are for x2 at s = 0.5 and 0.75. The dashed line marks the

locus of equal similarity to x1 and x2 which always passes through the origin

for cosine and extended Jaccard similarity.

Using Euclidean similarity s(E), iso-similarities are concentric hyper-

spheres around the considered point. Due to the finite range of similarity,

the radius decreases hyperbolically as s(E) increases linearly. The radius does

not depend on the center-point. The only location with similarity of 1 is the

considered point itself and all finite locations have a similarity greater than

0. This last property tends to generate non-sparse similarity matrices. Using

the cosine measure s(C) renders the iso-similarities to be hypercones all having

their apex at the origin and axis aligned with the considered point. Loca-

tions with similarity 1 are on the 1-dimensional sub-space defined by this axis.

The locus of points with similarity 0 is the hyperplane through the origin and

perpendicular to this axis. For the extended Jaccard similarity s(J), the iso-

similarities are non-concentric hyperspheres. The only location with similarity

1 is the point itself. The hypersphere radius increases with the the distance

of the considered point from the origin so that longer vectors turn out to be

more tolerant in terms of similarity than smaller vectors. Sphere radius also

increases with similarity and as s(J) approaches 0 the radius becomes infinite

rendering the sphere to the same hyperplane as obtained for cosine similarity.

Thus, for s(J) → 0, extended Jaccard behaves like the cosine measure, and for

s(J) → 1, it behaves like the Euclidean distance.
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Figure 4.1: Properties of (a) Euclidean-based, (b) cosine, and (c) extended
Jaccard similarity measures illustrated in 2 dimensions. Two points (1, 2)† and
(3, 1)† are marked with ×s. For each point iso-similarity surfaces for s = 0.25,
0.5, and 0.75 are shown with solid lines. The surface that is equi-similar to
the two points is marked with a dashed line.

In traditional Euclidean k-means clustering the optimal cluster repre-

sentative cℓ minimizes the sum of squared error criterion, i.e.,

cℓ = arg min
z∈F

∑

xj∈Cℓ

‖xj − z‖2
2. (4.5)

In the following, we show how this convex distance-based objective can be

translated and extended to similarity space. Consider the generalized objective

function f(Cℓ, z) given a cluster Cℓ and a representative z:

f(Cℓ, z) =
∑

xj∈Cℓ

d(xj, z)
2 =

∑

xj∈Cℓ

‖xj − z‖2
2. (4.6)

We use the transformation from subsection 4.2.1 to express the objective in

terms of similarity rather than distance:

f(Cℓ, z) =
∑

xj∈Cℓ

− log(s(xj, z)) (4.7)
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Figure 4.2: More similarity properties shown on the 2-dimensional example of
figure 4.1. The goodness of a location as the common representative of the two
points is indicated with brightness. The best representative is marked with a
⋆. The extended Jaccard (c) adopts the middle ground between Euclidean (a)
and cosine-based similarity (b).

Finally, we simplify and transform the objective using a strictly monotonic

decreasing function: Instead of minimizing f(Cℓ, z), we maximize f ′(Cℓ, z) =

e−f(Cℓ,z). Thus, in similarity space, the least squared error representative cℓ ∈
F for a cluster Cℓ satisfies

cℓ = arg max
z∈F

∏

xj∈Cℓ

s(xj, z). (4.8)

Using the concave evaluation function f ′, we can obtain optimal representa-

tives for non-Euclidean similarity spaces.

To illustrate the values of the evaluation function f ′({x1,x2}, z) are

used to shade the background in figure 4.2. The maximum likelihood repre-

sentative of x1 and x2 is marked with a ⋆ in figure 4.2. For cosine similarity all

points on the equi-similarity are optimal representatives. In a maximum like-

lihood interpretation, we constructed the distance similarity transformation

such that p(z|cℓ) ∼ s(z, cℓ). Consequently, we can use the dual interpretations
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of probabilities in similarity space and errors in distance space.

4.3 Algorithms

In this section, we briefly summarize the algorithms used in our comparison.

A random algorithm is used as a baseline to compare the result quality of k-

means, graph partitioning, hypergraph partitioning and self organizing maps.

4.3.1 Random Baseline (RND)

As a baseline for comparing algorithms, we use clustering labels drawn from

a uniform random distribution over the integers from 1 to k. The complexity

of this algorithm is O(n).

4.3.2 Generalized k-means (KM)

We also employed the well-known Euclidean k-means algorithm and three vari-

ations of it using non-metric distance measures. The k-means algorithm is an

iterative algorithm to minimize the least squares error criterion [DH73]. A

cluster Cℓ is represented by its center µℓ, the mean of all samples in Cℓ. The

centers are initialized with a random selection of k data objects. Each sample

is then labeled with the index ℓ of the nearest or most similar center. In clas-

sical k-means, ‘nearest’ means the point with the smallest Euclidean distance.

However, k-means can be generalized by substituting nearness with any other

notion of similarity. For our comparison, we will use all four definitions of

the similarity s(xa,xb) between two objects xa and xb as introduced in the

previous section. Subsequent re-computing of the mean for each cluster and

99



re-assigning the cluster labels is iterated until convergence to a fixed labeling

after m iterations. The complexity of this algorithm is O(n · d · k · m).

4.3.3 Weighted Graph Partitioning (GP)

Clustering can be posed as a graph partitioning problem. The objects are

viewed as the set of vertices V. Two documents xa and xb (or vertices va

and vb) are connected with an undirected edge of positive weight s(xa,xb), or

(a, b, s(xa,xb)) ∈ E . The cardinality of the set of edges |E| equals the number

of non-zero similarities between all pairs of samples. A set of edges whose

removal partitions a graph G = (V, E) into k pair-wise disjoint sub-graphs

Gℓ = (Vℓ, Eℓ), is called an edge separator. The objective in graph partitioning

is to find such a separator with a minimum sum of edge weights. While striving

for the minimum cut objective, the number of objects in each cluster has to be

kept approximately equal. We produce balanced (equal sized) clusters from

the similarity matrix using the multi-level graph partitioner METIS [KK98a].

The most expensive step in this O(n2 · d) technique is the computation of the

n × n similarity matrix. In document clustering, sparsity can be induced by

looking only at the v strongest edges or at the subgraph induced by prun-

ing all edges except the v nearest-neighbors for each vertex. Sparsity makes

this approach feasible for large data-sets. Sparsity is induced by particular

similarities definitions based e.g., on the cosine of document vectors.

4.3.4 Hypergraph Partitioning (HGP)

A hypergraph is a graph whose edges can connect more than two vertices

(hyperedges). The clustering problem is then formulated as a finding the
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minimum-cut of a hypergraph. A minimum-cut is the removal of the set

of hyperedges (with minimum edge weight) that separates the hypergraph

into k unconnected components. Again, an object xj maps to a vertex vj.

Each word (feature) maps to a hyperedge connecting all vertices with non-

zero frequency count of this word. The weight of this hyperedge is chosen to

be the total number of occurrences in the data-set. Hence, the importance

of a hyperedge during partitioning is proportional to the occurrence of the

corresponding word. The minimum-cut of this hypergraph into k unconnected

components gives the desired clustering. We employ the HMETIS package for

partitioning. An advantage of this approach is that the clustering problem can

be mapped to a graph problem without the explicit computation of similarity,

which makes this approach computationally efficient with O(n ·d ·k) assuming

a (close to) linear performing hypergraph partitioner. Note that, sample-wise

frequency information gets lost in this formulation since there is only a single

weight associated with a hyperedge.

4.3.5 Self-Organizing Map (SOM)

The self-organizing map [Koh95, Bis95] is a popular topology preserving clus-

tering algorithm with nice visualization properties. For simplicity, we only

use a 1-dimensional line topology. Also, 2-dimensional or higher dimensional

topologies can be used. To generate k clusters we use k cells in a line topology

and train the network for m = 5000 epochs or 10 minutes (whichever comes

first). All experiments are run on a dual processor 450 MHz Pentium using the

SOM implementation in the Matlab neural network tool-box. The resulting

network is subsequently used to generate the label vector λ from the index of
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the most activated neuron for each sample. The complexity of this incremental

algorithm is O(n · d · k · m) and mostly determined by the number of epochs

m and samples n.

4.3.6 Other Clustering Methods

Several other clustering methods have also been considered but have not been

used in our experimental comparison. Agglomerative models (single link,

average link, complete link) [DH73] are computationally expensive (at least

O(n2 log n)) and often result in highly skewed trees, indicating domination

by one very large cluster. Mixture models [Fuk72] such as AUTOCLASS

[CS96] are also popular but are limited by problems of parameter estimation

for high-dimensional data. Clustering algorithms from the data mining com-

munity (e.g., CLARANS, DBSCAN, BIRCH, CLIQUE, CURE, WAVECLUS-

TER [RS99, HKT01]) have been omitted since they are mostly scalable ver-

sions designed for low-dimensional data. Partitioning approaches based on

principal directions have not been shown here since they perform comparably

to hierarchical agglomerative clustering [BGG+99]. Other graph partitioning

approaches such as spectral bisectioning [HL95] are not included since they

are already represented by the multi-level partitioner METIS.

4.4 Evaluation Methodology

We conducted experiments with all five algorithms, using four variants (in-

volving different similarity measures) each for k-means and graph partitioning,

yielding eleven techniques in total. This section gives an overview of ways to

evaluate clustering results. A nice recent survey on clustering evaluation can
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be found in [ZK01], where the emphasis is on determining the impact of a

variety of cost functions, built using distance or cosine similarity measures, on

the quality of two generic clustering approaches.

There are two fundamentally different ways of evaluating the quality of

results delivered by a clustering algorithm. Internal criteria formulate quality

as a function of the given data and/or similarities. For example, the mean

squared error criterion is a popular evaluation criterion. Hence, the clusterer

can evaluate its own performance and tune its results accordingly. When us-

ing internal criteria, clustering becomes an optimization problem. External

criteria impose quality by additional, external information not given to the

clusterer, such as class labels. While this makes the problem ill-defined, it is

sometimes more appropriate since groupings are ultimately evaluated exter-

nally by humans.

4.4.1 Internal (model-based, unsupervised) Quality

Internal quality measures, such as the sum of squared errors, have traditionally

been used extensively. Given an internal quality measure, clustering can be

posed as an optimization problem that is typically solved via greedy search.

For example, k-means has been shown to greedily optimize the sum of squared

errors.

Error (mean/sum-of-squared error, scatter matrices). The most pop-

ular cost function is the scatter of the points in each cluster. Cost is

measured as the mean square error of data points compared to their re-

spective cluster centroid. The well known k-means algorithm has been

shown to heuristically minimize the squared error objective. Let nℓ be
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the number of objects in cluster Cℓ according to λ. Then, the cluster

centroids are

cℓ =
1

nℓ

∑

λj=ℓ

xj. (4.9)

The sum of squared errors SSE is

SSE(X, λ) ==
k

∑

ℓ=1

∑

x∈Cℓ

‖x − cℓ‖2
2. (4.10)

Note that the SSE formulation can be extended to other similarities by

using SSE(X, λ) =
∑k

ℓ=1

∑

x∈Cℓ
− log s(x, cℓ). Since, we are interested

in a quality measure ranging from 0 to 1, where 1 indicates a perfect

clustering, we define quality as

φ(S)(X, λ) = e−SSE(X,λ). (4.11)

This objective can also be viewed from a probability density estimation

perspective using EM [DLR77]. Assuming the data is generated by a

mixture of multi-variate Gaussians with identical, diagonal covariance

matrices, the SSE objective is equivalent to the maximizing the likelihood

of observing the data by adjusting the centers and minimizing weights

of the Gaussian mixture.

Edge cut. When clustering is posed as a graph partitioning problem, the

objective is to minimize edge cut. Formulated as a [0,1]-quality maxi-

mization problem, the objective is the ratio of remaining edge weights

to total pre-cut edge weights:

φ(C)(X, λ) =

∑k
ℓ=1

∑

a∈Cℓ

∑

b∈Cℓ,b>a s(xa,xb)
∑n

a=1

∑n
b=a+1 s(xa,xb)

(4.12)
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Note that this quality measure can be trivially maximized when there are

no restrictions on the sizes of clusters. In other words, edge cut quality

evaluation is only fair when the compared clusterings are well-balanced.

Let us define the balance of a clustering λ as

φ(BAL)(λ) =
n/k

maxℓ∈{1,...,k} nℓ

. (4.13)

A balance of 1 indicates that all clusters have the same size. In certain

applications, balanced clusters are desirable because each cluster repre-

sents an equally important share of the data. Balancing has application

driven advantages e.g., for distribution, navigation, summarization of

the clustered objects. In chapter 3, retail customer clusters are bal-

anced so they represent an equal share of revenue. Balanced clustering

for browsing text documents have also been proposed [BG02]. However,

some natural classes may not be of equal size, so relaxed balancing may

become necessary. A middle ground between no constraints on balanc-

ing (e.g., k-means) and tight balancing (e.g., graph partitioning) can be

achieved by over-clustering using a balanced algorithm and then merging

clusters subsequently [KHK99].

Category Utility [GC85, Fis87a]. The category utility function measures

quality as the increase in predictability of attributes given a clustering.

Category utility is defined as the increase in the expected number of at-

tribute values that can be correctly guessed given a partitioning, over the

expected number of correct guesses with no such knowledge. A weighted

average over categories allows comparison of different sized partitions.

For binary features (i.e., attributes) the probability of the i-th attribute
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to be 1 is the mean of the i-th row of the data matrix X:

x̄i =
1

n

n
∑

j=1

xi,j (4.14)

The conditional probability of the i-th attribute to be 1 given that the

data point is in cluster ℓ is

x̄i,ℓ =
1

nℓ

∑

λj=ℓ

xi,j. (4.15)

Hence, category utility can be written as

φ(CU)(X, λ) =
4

d

k
∑

ℓ=1

nℓ

n

[(

d
∑

i=1

(

x̄2
i,ℓ − x̄i,ℓ

)

)

−
(

d
∑

i=1

(

x̄2
i − x̄i

)

)]

.

(4.16)

Note that our definition divides the standard category by d so that φ(CU)

never exceeds 1. Recently, it has been shown that category utility is

related to squared error criterion for a particular standard encoding

[Mir01]. Category utility is defined to maximize predictability of at-

tributes for a clustering. This limits the scope of this quality measure

to low-dimensional clustering problems (preferably with each dimension

being a categorical variable with small cardinality). In high-dimensional

problems, such as text clustering, the objective is not to be able to pre-

dict the appearance of any possible word in a document from a particular

cluster. In fact, there might be more unique words / terms / phrases

than documents in a small data-set. In preliminary experiments, cate-

gory utility did not succeed in differentiating among the compared ap-

proaches (including random partitioning).

Using internal quality measures, fair comparisons can only be made amongst

clusterings with the same choices of vector representation and similarity /
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distance measure. E.g., using edge-cut in cosine-based similarity would not be

meaningful for an evaluation of Euclidean k-means. So, in many applications a

consensus on the internal quality measure for clustering is not found. However,

in situations where the pages are categorized (labelled) by an external source,

there is a plausible way out!

4.4.2 External (model-free, semi-supervised) Quality

External quality measures require an external grouping, for example as indi-

cated by category labels, that is assumed to be ‘correct’. However, unlike in

classification such ground truth is not available to the clustering algorithm.

This class of evaluation measures can be used to compare start-to-end perfor-

mance of any kind of clustering regardless of the models or similarities used.

However, since clustering is an unsupervised problem, the performance cannot

be judged with the same certitude as for a classification problem. The external

categorization might not be optimal at all. For example, the way web-pages

are organized in the Yahoo! taxonomy is certainly not the best structure possi-

ble. However, achieving a grouping similar to the Yahoo! taxonomy is certainly

indicative of successful clustering.

Given g categories (or classes) Kh (h ∈ {1, . . . , g}), we denote the cate-

gorization label vector κ, where xa ∈ Kh ⇔ κa = h. Let n(h) be the number of

objects in category Kh according to κ, and nℓ the number of objects in cluster

Cℓ according to λ. Let n
(h)
ℓ denote the number of objects that are in cluster ℓ

according to λ as well as in category h given by κ. There are several ways of

comparing the class labels with cluster labels:

Purity. Purity can be interpreted as classification accuracy under the as-

107



sumption that all objects of a cluster are classified to be members of the

dominant class for that cluster. For a single cluster Cℓ, purity is defined

as the ratio of the number of objects in the dominant category to the

total number of objects:

φ(A)(Cℓ, κ) =
1

nℓ

max
h

(n
(h)
ℓ ) (4.17)

To evaluate an entire clustering, one computes the average of the cluster-

wise purities weighted by cluster size:

φ(A)(λ, κ) =
1

n

k
∑

ℓ=1

max
h

(n
(h)
ℓ ) (4.18)

Entropy [CT91]. Entropy is a more comprehensive measure than purity

since rather than just considering the number of objects ‘in’ and ‘not in’

the dominant class, it takes the entire distribution into account. Since

a cluster with all objects from the same category has an entropy of 0,

we define entropy-based quality as 1 minus the [0,1]-normalized entropy.

We define entropy-based quality for each cluster as:

φ(E)(Cℓ, κ) = 1 −
g

∑

h=1

−n
(h)
ℓ

nℓ

logg

(

n
(h)
ℓ

nℓ

)

(4.19)

And through weighted averaging, the total entropy quality measure falls

out to be:

φ(E)(λ, κ) = 1 +
1

n

k
∑

ℓ=1

g
∑

h=1

n
(h)
ℓ logg

(

n
(h)
ℓ

nℓ

)

(4.20)

Both, purity and entropy are biased to favor large number of clusters.

In fact, for both these criteria, the globally optimal value is trivially

reached when each cluster is a single object!
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Precision, recall & F-measure [vR79]. Precision and recall are standard

measures in the information retrieval community. If a cluster is viewed

as the results of a query for a particular category, then precision is the

fraction of correctly retrieved objects:

φ(P)(Cℓ,Kh) = n
(h)
ℓ /nℓ (4.21)

Recall is the fraction of correctly retrieved objects out of all matching

objects in the database:

φ(R)(Cℓ,Kh) = n
(h)
ℓ /n(h) (4.22)

The F-measure combines precision and recall into a single number given

a weighting factor. The F1-measure combines precision and recall with

equal weights. The following equation gives the F1-measure when query-

ing for a particular category Kh

φ(F1)(Kh) = max
ℓ

2 φ(P)(Cℓ,Kh) φ(R)(Cℓ,Kh)

φ(P)(Cℓ,Kh) + φ(R)(Cℓ,Kh)
= max

ℓ

2n
(h)
ℓ

nℓ + n(h)
(4.23)

Hence, for the entire clustering the total F1-measure is:

φ(F1)(λ, κ) =
1

n

g
∑

h=1

n(h)φ(F)(Kh) =
1

n

g
∑

h=1

n(h) max
ℓ

2n
(h)
ℓ

nℓ + n(h)
(4.24)

Unlike purity and entropy, the F1-measure is not biased towards a larger

number of clusters. In fact, it favors coarser clusterings. Another issue

is that random clustering tends not to be evaluated at 0.

Mutual information [CT91]. The mutual information is the most theoreti-

cally well-founded among the considered quality measures. It is unbiased
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and symmetric in terms of κ and λ. We propose a [0,1]-normalized mu-

tual information-based quality criterion φ(NMI) which can be computed

as follows:

φ(NMI)(λ, κ) =
2

n

k
∑

ℓ=1

g
∑

h=1

n
(h)
ℓ logk·g

(

n
(h)
ℓ n

n(h)nℓ

)

(4.25)

A detailed derivation of this definition can be found in appendix B.1.

Mutual information does not suffer from the biases like purity, entropy

and the F1-measure. Singletons are not evaluated as perfect. Random

clustering has mutual information of 0 in the limit. However, the best

possible labeling evaluates to less than 1, unless classes are balanced.5

Note that our normalization penalizes over-refinements unlike the stan-

dard mutual information.6

External criteria enable us to compare different clustering methods fairly pro-

vided the external ground truth is of good quality. One could argue against

external criteria that clustering does not have to perform as well as classifica-

tion. However, in many cases clustering is an interim step to better understand

and characterize a complex data-set before further analysis and modeling.

Normalized mutual information will be our preferred choice of evalua-

tion in the next section, because it is an unbiased measure for the usefulness

of the knowledge captured in the clustering in predicting category labels.

5There are other ways of normalizing mutual information such that the best possible
labeling evaluates to 1 even when the categorization is not balanced. However, these tend
to biased towards high k. Details can be found in appendices B.1 and B.2.

6Let κ = (1, 1, 2, 2)†, λ(1) = (1, 1, 2, 2)†, and λ(2) = (1, 2, 3, 4)†. λ(2) is an over-refinement
of correct clustering λ(1). The mutual information between κ and λ(1) is 2 and the mu-
tual information between κ and λ(2) is 2, also. Our [0,1]-normalized mutual information
measure φ(NMI) penalizes the useless refinement: φ(NMI)(λ(2), κ) = 2/3 which is less than
φ(NMI)(λ(1), κ) = 1.
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4.5 Experiments on Text Documents

4.5.1 Data-sets and Preprocessing

We chose four text data-sets for comparison. In this subsection we will briefly

describe them:

• YAHOO. This data was parsed from Yahoo! news web-pages [BGG+99].

The 20 original categories for the pages are:

– Business

– Entertainment

∗ no sub-category

∗ art

∗ cable

∗ culture

∗ film

∗ industry

∗ media

∗ multimedia

∗ music

∗ online

∗ people

∗ review

∗ stage

∗ television
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∗ variety

– Health

– Politics

– Sports

– Technology

The data can be downloaded from ftp://ftp.cs.umn.edu/dept/users/

/boley/ (K1 series) (see also appendix A.5).

• N20. The data contains roughly 1000 postings each from the following

20 newsgroup topics [Lan95]:

– alt.atheism

– comp.graphics

– comp.os.ms-windows.misc

– comp.sys.ibm.pc.hardware

– comp.sys.mac.hardware

– comp.windows.x

– misc.forsale

– rec.autos

– rec.motorcycles

– rec.sport.baseball

– rec.sport.hockey

– sci.crypt
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– sci.med

– sci.electronics

– sci.space

– soc.religion.christian

– talk.politics.guns

– talk.politics.mideast

– talk.politics.misc

– talk.religion.misc

The data can be found e.g., at http://www.at.mit.edu/∼jrennie/

/20Newsgroups/ (see also appendix A.6).

• WEBKB. From the CMU Web KB Project [CDF+98], web-pages from the

following ten industry sectors according to Yahoo! were selected:

– airline

– computer hardware

– electronic instruments and controls

– forestry and wood products

– gold and silver

– mobile homes and rvs

– oil well services and equipment

– railroad

– software and programming
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– trucking

Each industry contributes about 10% of the pages.

• REUT. The Reuters-21578, Distribution 1.0 is available from Lewis at

http://www.research.att.com/∼lewis/. We use the primary topic

keyword as the category. There are 82 unique primary topics in the

data. The categories are highly imbalanced.

The data-sets encompass a large variety of text styles. E.g., in WEBKB doc-

uments vary significantly in length, some are in the wrong category, some

are dead links or have little content (e.g., are mostly images). Also, the hub

pages that Yahoo! refers to are usually top-level branch pages. These tend to

have more similar bag-of-words content across different classes (e.g., contact

information, search windows, welcome messages) than news content oriented

pages. In contrast, the content of REUT are well written news agency messages.

However, they often belong to more than one category.

Words were stemmed using Porter’s suffix stripping algorithm [FBY92]

in YAHOO and REUT. For all data-sets, words occurring on average between 0.01

and 0.1 times per document were counted to yield the term-document matrix.

This excludes stop words such as a, and very generic words such as new, as

well as too rare words such as haruspex.

4.5.2 Results

In this section, we present and compare the results of the eleven approaches

on the four document data-sets. Clustering quality is understood in terms

of mutual information and balance. For each data-set we set the number of
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clusters k to be twice the number of categories g, except for the REUT data-set

where we used k = 40 since there are many small categories. Using a greater

number of clusters than classes allows multi-modal distributions for each class.

For example, in an XOR like problem, there are two classes, but four clusters.

Let us first look at a representative result to illustrate the behavior

of some algorithms and our evaluation methodology. In figure 4.3, confusion

matrices illustrating quality differences of RND, KM E, KM C, and GP C

approaches on a sample of 800 documents from N20 are shown. The horizon-

tal and vertical axis correspond to the categories and clusters, respectively.

Clusters are sorted in increasing order of dominant category. Entries indicate

the number n
(h)
ℓ of documents in cluster ℓ and category h by darkness. Ex-

pectedly, random partitioning RND results in indiscriminating clusters with

a mutual information score φ(NMI) = 0.16. The purity score φ(A) = 0.16 indi-

cates that on average the dominant category contributes 16% of the objects

in a cluster. However, since labels are drawn from a uniform distribution,

cluster sizes are somewhat balanced with φ(BAL) = 0.63. KM E delivers one

large cluster (cluster 15) and many small clusters with φ(BAL) = 0.03. This

strongly imbalanced clustering is characteristic for KM E on high-dimensional

sparse data and is problematic because it usually defeats certain application

specific purposes such as browsing. It also results in sub-random quality

φ(NMI) = 0.11 (φ(A) = 0.17). KM C results are good. A ‘diagonal’ can be

clearly seen in the confusion matrix. This indicates that the clusters align

with the ground truth categorization which is reflected by an overall mutual

information φ(NMI) = 0.35 (φ(A) = 0.38). Balancing is good as well with

φ(BAL) = 0.45. GP C exceeds KM C in both aspects with φ(NMI) = 0.47

(φ(A) = 0.48) as well as balance φ(BAL) = 0.95. The ‘diagonal’ is stronger and
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Figure 4.3: Confusion matrices illustrating quality differences of RND, KM
E, KM C, and GP C approaches on a sample of 800 documents from N20.
Matrix entries indicate the number n

(h)
ℓ of documents in cluster ℓ (row) and

category h (column) by darkness. Clusters are sorted in ascending order of
their dominant category. KM E delivers one large cluster and shows sub-
random quality φ(NMI). KM C results are good, but are exceeded by GP C in
terms of mutual information φ(NMI) as well as balance φ(BAL).

clusters are very balanced.

The rest of the results are given in summarized form instead of the

more detailed treatment in the example above, since the comparative trends

are very clear even at this macro level. Some examples of detailed confusion

matrices and pairwise t-tests can be found in our earlier work [SGM00].

For a systematic comparison, ten experiments were performed for each

of the random samples of sizes 50, 100, 200, 400, and 800. Figure 4.4 shows

performance curves in terms of (relative) mutual information comparing 10

algorithms on 4 data sets. Each curve shows the difference ∆φ(NMI) in mu-

tual information-based quality φ(NMI) compared to random partitioning for 5

sample sizes (at 50, 100, 200, 400, and 800). Error bars indicate ±1 standard
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deviations over 10 experiments. Figure 4.5 shows quality in terms of balance

for 4 data sets in combination with 10 algorithms. Each curve shows the clus-

ter balance φ(BAL) for 5 sample sizes (again at 50, 100, 200, 400, and 800).

Error bars indicate ±1 standard deviations over 10 experiments. Figure 4.6

summarizes the results on all four data-sets at the highest sample size level

(n = 800). We also conducted pairwise t-tests at n = 800 to assure differences

in average performance are significant. For illustration and brevity, we chose

to show mean performance with standard variation bars rather than the t-test

results (see our previous work [SGM00]).

First, we look at quality in terms of mutual information (figures 4.4,

4.6(a)). With increasing sample size n, the quality of clusterings tends to im-

prove. Non-metric (cosine, correlation, Jaccard) graph partitioning approaches

work best on text data (n = 800 : ∆φ(NMI) ≈ 0.3) followed by non-metric k-

means approaches. Clearly, a non-metric e.g., dot-product-based similarity

measure is necessary for good quality. Due to the conservative normalization,

depending on the given data-set the maximum obtainable mutual information

(for a perfect classifier!) tends to be around 0.8 to 0.9. A mutual information-

based quality around 0.4 and 0.5 (which is approximately 0.3 to 0.4 better

than random at n = 800) is an excellent result.7 Hypergraph partitioning con-

stitutes the third tier. Euclidean techniques including SOM perform rather

poorly. Surprisingly, the SOM still delivers significantly better than random

results despite the limited expressiveness of the implicitly used Euclidean dis-

tances. The success of SOM is explained with the fact that the Euclidean

distance becomes locally meaningful once the cell-centroids are locked onto a

7For verification purposes we also computed entropy values for our experiments and
compared with e.g., [ZK01] to ensure validity.
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good cluster.

All approaches behaved consistently over the four data-sets with only

slightly different scale caused by the different data-sets’ complexities. The

performance was best on YAHOO and WEBKB followed by N20 and REUT. Inter-

estingly, the gap between GP and KM techniques is wider on YAHOO than on

WEBKB. The low performance on REUT is probably due to the high number of

classes (82) and their widely varying sizes.

In order to assess which approaches are more suitable for a particular

amount of objects n, we also looked for intersects in the performance curves

of the top algorithms (non-metric GP and KM, HGP).8 In our experiments,

the curves do not intersect indicating that ranking of the top performers does

not change in the range of data-set sizes considered.

In terms of balance (figures 4.5, 4.6(b)) the advantages of graph par-

titioning are clear. Graph partitioning explicitly tries to achieve balanced

clusters (n = 800 : φ(BAL) ≈ 0.9). The second tier is hypergraph partition-

ing which is also a balanced technique (n = 800 : φ(BAL) ≈ 0.7) followed by

non-metric k-means approaches (n = 800 : φ(BAL) ≈ 0.5). Poor balancing is

shown by SOM and Euclidean k-means (n = 800 : φ(BAL) ≈ 0.1). Interestingly,

balancedness does not change significantly for the k-means-based approaches

as the number of samples n increases. Graph partitioning-based approaches

quickly approach perfect balancing as would be expected since they are ex-

plicitly designed to do so.

Non-metric graph partitioning is significantly better in terms of mutual

information as well as in balance. There is no significant difference in perfor-

8Intersections of performance curves in classification (learning curves) have been studied
recently e.g., in [PPS01].
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mance amongst the non-metric similarity measures using cosine, correlation,

and extended Jaccard. Euclidean distance-based approaches do not perform

better than random clustering.
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Figure 4.6: Comparison of cluster quality in terms of (a) mutual information
and (b) balance on average over 4 data-sets with 10 trials each at 800 samples.
Error-bars indicate ±1 standard deviation. Graph partitioning is significantly
better in terms of mutual information as well as in balance. Euclidean distance-
based approaches do not perform better than random clustering.

4.6 Summary

The key contributions of this chapter lie in highlighting the advantages of

working in a similarity space when clustering very high-dimensional sparse

data such as text documents, and in providing a framework for comparing

several clustering approaches across a variety of similarity spaces using mutual

information. Another useful contribution is the conceptual assessment of a

variety of similarity measures and evaluation criteria.

The comparative results indicate that for word frequency-based clus-

tering of web documents, graph partitioning is better suited than generalized

k-means, hypergraph partitioning, and SOM. The search procedure implicit in

graph partitioning is far less local than the hill-climbing approach of k-means.
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Moreover, it also provides a way to obtain balanced clusters and exhibit a

lower variance in results.

Metric distances (such as Euclidean distance) are not appropriate for

high-dimensional, sparse domains. Cosine, correlation and extended Jaccard

measures are successful and perform equivalently in capturing the similarities

implicitly indicated by manual categorizations.
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Chapter 5

Cluster Ensembles

The whole is more than the sum of its parts.

– Aristotle1

It is widely recognized that combining multiple classification or regres-

sion models typically provides superior results compared to using a single,

well-tuned model. However, there are no well known approaches to combining

multiple non-hierarchical clusterings. The idea of combining object partition-

ings without accessing the original objects’ features leads us to a general knowl-

edge reuse framework that we call cluster ensembles. Our contribution in this

chapter is to formally define the cluster ensemble problem as an optimization

problem in terms of mutual information and to propose three effective and

efficient combiners (consensus functions) for solving it. The combiners are

designed with the relationship-based approach developed in this dissertation,

because similarity can be used naturally in the label space to infer the relation-

ships between clusters and/or objects. The first combiner induces a pairwise

1In Metaphysica
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similarity measure between objects from the partitionings and then reclusters

the objects. The second combiner creates multi-fold relationships (hyperedges)

amongst the objects and uses them to repartition based on hypergraph par-

titioning. The third one uses the similarity of labels to group clusters into

meta-clusters. Collapsed meta-clusters then compete for each object to deter-

mine the combined clustering. We also compare the approaches in a controlled

experiment and propose a supra-consensus function that combines all three.

We present three situations where our combiners can be used as wrappers to

integrate sets of groupings: robust centralized clustering, object-distributed

clustering, and feature-distributed clustering. Results on synthetic as well as

real web data-sets are given to show that cluster ensembles can: (i) improve

quality and robustness, (ii) enable distributed clustering, and (iii) speed up

processing significantly with little loss in quality.

5.1 Motivation

The notion of integrating multiple data sources and/or learned models is found

in several disciplines, for example, the combining of estimators in economet-

rics [Gra89], evidences in rule-based systems [Bar81] and multi-sensor data

fusion [Das94]. A simple but effective type of such multi-learner systems are

ensembles, wherein each component learner (typically a regressor or classi-

fier) tries to solve the same task. Each learner may receive somewhat dif-

ferent subsets of the data for ‘training’ or parameter estimation (as in bag-

ging [Bre94] and boosting [DCJ+94]), and may use different feature extractors

on the same raw data. The system output is determined by combining the

outputs of the individual learners via a variety of methods including voting,
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(weighted) averaging, order statistics, product rule, entropy, and stacking. In

the past few years, a host of experimental results have shown that such en-

sembles provide statistically significant improvements in performance along

with tighter confidence intervals, especially when the component models are

‘unstable’ [Wol92, GBC92, Sha96, CS95]. Moreover, theoretical analysis has

been developed for both regression [Per93, Has93] and classification [TG96]

to estimate the gains achievable. Combining is an effective way of reducing

model variance, and in certain situations it also reduces bias [Per93, TG99]. It

works best when each learner is well trained, but different learners generalize

in different ways, i.e., there is diversity in the ensemble [KV95, Die01].

In unsupervised learning, the clustering problem is concerned with par-

titioning a set of objects X into k disjoint2 groups / clusters C1, . . . , Ck such

that similar objects are in the same cluster while dissimilar objects are in

different clusters. Clustering is often posed as an optimization problem by

defining a suitable error criterion to be minimized. Using this formulation,

many standard algorithms such as k-means and agglomerative clustering have

been established over the past forty years [Eve74, JD88]. Recent interest in

the data mining community has lead to a new breed of approaches such as

CLARANS, DBScan, BIRCH, CLIQUE, and WaveCluster [RS99], that are

oriented towards clustering large data-sets kept in databases and emphasize

scalability.

Unlike classification problems, there are no well known approaches to

combining multiple clusterings. We call the combination of multiple parti-

tionings of the same underlying set of objects without accessing the original

2The methods can be extended to combine soft clusterings, wherein an object can belong
to multiple clusters with different degrees of ‘association’.
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features as the cluster ensemble design problem. Since the combiner has no

more access to the original features and only cluster labels are available, this

is a framework for knowledge reuse [BG99]. This problem is more difficult

than designing classifier ensembles since cluster labels are symbolic and so

one must also solve a correspondence problem. In addition, the number and

shape of clusters provided by the individual solutions may vary based on the

clustering method as well as on the particular view of the data presented to

that method. Moreover, the desired number of clusters is often not known

in advance. In fact, the ‘right’ number of clusters in a data-set depends on

the scale at which the data is inspected, and sometimes, equally valid (but

substantially different) answers can be obtained for the same data [CG96].

A clusterer consists of a particular clustering algorithm with a specific

view of the data. A clustering is the output of a clusterer and consists of the

group labels for some or all objects (a labeling). Cluster ensembles provide a

tool for consolidation of results from a portfolio of individual clustering results.

It is useful in a variety of contexts:

• Quality and Robustness. Combining several clusterings can lead to im-

proved quality and robustness of results. For classification or regression

problems, it has been shown the gains from using ensemble methods are

directly related to the amount of diversity among the individual compo-

nent models [KV95, TG99]. One desires that each individual model be

good, but at the same time, these models should have different inductive

biases and thus generalize in distinct ways [Die01]. No wonder ensem-

bles are most popular for integrating relatively unstable models such as

decision trees and multi-layered perceptrons. In the clustering context,

diversity can be created in numerous ways, including:
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– using different features to represent the objects. For example, im-

ages can be represented by their pixels, histograms, location and

parameters of perceptual primitives, 3D scene coordinates, etc.

– varying the number and/or location of initial cluster centers in it-

erative algorithms such as k-means,

– varying the order of data presentation in on-line methods such as

BIRCH,

– using a portfolio of very different clustering algorithms e.g. using

density based, k-means or soft variants such as fuzzy c-means, graph

partitioning based, statistical mechanics based, etc.

It is well known that no clustering method is perfect, and the perfor-

mance of a given method can vary significantly across data-sets. For

example, the popular k-means algorithm that performs respectably in

several applications, has an underlying assumption that the data (af-

ter appropriate normalization such as using Mahalanobis distance) is

generated by a mixture of k Gaussians, each having identical, isotropic

covariance matrices. If the actual data distribution is very different from

this generative model, then, even with the ‘correct’ guess for k, its per-

formance can be worse than a random partitioning, specially in sparse,

high dimensional spaces (see chapter 3). In fact, for difficult data-sets,

comparative studies across multiple clustering algorithms typically show

much more variability in results than comparative studies on multiple

classification methods, where any good approximator of Bayesian a pos-

teriori class probabilities will provide comparable results [RL91]. Thus

there should be a potential for greater gains when using an ensemble for
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clustering problems.

A different but related motivation for using a cluster ensemble is to

build a robust clustering portfolio that can perform well over a wide

range of data-sets with little hand-tuning. For example, by using an

ensemble that includes approaches suitable for low-dimensional, metric

spaces (e.g., k-means, SOM [Koh95], DBSCAN [EKSX96]) as well as

algorithms tailored for high-dimensional, sparse spaces (e.g., spherical

k-means [DM01], and Jaccard-based graph partitioning (e.g., see chap-

ter 3), one may perform very well in 3D as well as in 30000D spaces

without having to switch models. This characteristic is very attractive

in practical settings.

• Knowledge Reuse. Another important consideration is the reuse of ex-

isting clusterings. In several applications, a variety of clusterings for

the objects under consideration may already exist. For example, on the

web, pages are categorized e.g., by Yahoo! (according to a manually-

crafted taxonomy), by your Internet service provider (according to re-

quest patterns and frequencies) and by your personal bookmarks (accord-

ing to your preferences). In grouping customers for a direct marketing

campaign, various legacy customer segmentations might already exist,

based on demographics, credit rating, geographical region, or income

tax bracket. In addition, customers can be clustered based on their pur-

chasing history (e.g., market-baskets). Can we reuse such pre-existing

knowledge to create a single consolidated clustering? Knowledge reuse in

this context means that we exploit the information in the provided clus-

ter labels without going back to the original features or the algorithms
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that were used to create the clusterings.

• Distributed Computing. The ability to deal with clustering in a dis-

tributed fashion is useful to improve scalability, security, and reliability.

Also, real applications often involve distributed databases due to orga-

nizational or operational constraints [KC00]. One can argue that by

transferring all data to a single warehouse and performing a series of

merges and joins, one can get a single (albeit very large), flat file. A tra-

ditional algorithm can be used after randomizing and subsampling this

file. But in real applications this approach may not be feasible because of

the computational, bandwidth and storage costs. In certain cases, it may

not even be possible for a variety of practical reasons including security,

privacy, proprietary nature of data, need for fault tolerant distribution

of data and services, real-time processing requirements, statutory con-

straints imposed by law, etc. [PCS00].

A cluster ensemble can combine individual results from the distributed

computing entities, under two scenarios:

– Object-distributed data. Each processor / clusterer has access to

only a subset of all objects, and can thus only cluster the observed

objects. For example, corporations tend to split their customers

regionally for more efficient management. Analysis such as cluster-

ing is often performed locally, and a cluster ensemble provides a

way of obtaining a holistic analysis without complete integration of

the local data warehouses. Note that in order to successfully com-

bine clusterings, the subsets of objects observed by the individual

clusterers must have some overlap.
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– Feature-distributed data. In this scenario, each processor / clusterer

sees only a limited number of features or attributes of each object,

i.e. it observes a particular aspect or view of the data. Aspects can

be completely disjoint features or have partial overlaps.

Contributions. The idea of integrating independently computed clus-

terings into a combined clustering leads us to a general knowledge reuse frame-

work that we call the cluster ensemble. Our contribution in this chapter is to

formally define the design of a cluster ensemble as an optimization problem and

to propose three effective and efficient frameworks for solving it. We show how

any set of clusterings can be represented as a hypergraph. Using this hyper-

graph, three methods are proposed for computing a combined clustering based

on similarity-based reclustering, hypergraph partitioning, and meta-clustering,

respectively. We also describe applications of cluster ensembles for each of the

three application scenarios described above and show results on real data.

Notation. Let X = {x1, x2, . . . , xn} denote a set of objects / samples

/ points. A partitioning of these n objects into k clusters can be represented

as a set of k sets of objects {Cℓ|ℓ = 1, . . . , k} or as a label vector λ ∈ N
n. We

also refer to a clustering / labeling as a model. A clusterer Φ is a function that

delivers a label vector given an ordered set of objects. Figure 5.1 shows the

basic setup of the cluster ensemble: A set of r labelings λ(1,...,r) is combined

into a single labeling λ using a consensus function Γ. We call the original set of

labelings, the profile and the resulting single labeling, the consensus clustering.

Vector / matrix transposition is indicated with a superscript †. A superscript

in brackets denotes an index and not an exponent.

Organization. In the next section, we will introduce the cluster en-
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Figure 5.1: The cluster ensemble. A consensus function Γ combines clusterings
λ(q) from a variety of sources, without resorting to the original object features
X or algorithms Φ.

semble problem in more detail and in section 5.3 we propose and compare three

possible combining schemes, Γ. In section 5.4 we will apply these schemes to

both centralized and distributed clustering problems and present case studies

on a variety of data-sets to highlight these applications.

5.2 The Cluster Ensemble Problem

5.2.1 Illustrative Example

First, we will illustrate combining of clusterings using a simple example. Con-

sider the seven points on the 2D plane shown in figure 5.2. Four views are

shown that project the data onto a 1D line. The square brackets denote the
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Figure 5.2: Illustration of multiple views generating different clusterings.
Seven objects in the 2D plane x1 . . . x7 are projected onto lines as illustrated
by the square brackets. Only objects within the square brackets are observed.
The clusters in these views (shown as bubbles) may deviate significantly from
the original groups (shown by colors) and vary tremendously amongst them-
selves. If the original 2D and 1D features are unavailable and only the cluster
labels in the views are known, the input to the cluster ensemble is the same
as in table 5.1.

direction of projection as well as the regions of observation. The scenario de-

picted in figure 5.2 is one out of many that could have generated the following

cluster ensemble problem. Please note that there is no feature information

available to the cluster ensembles. The 2D spatial position of the seven data

points is not know in the cluster ensemble problem (and neither are the pro-

jected 1D positions). The combining can only be based on the cluster infor-

mation. Let the following label vectors specify four clusterings of the same set
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of seven objects (see also table 5.1):

λ(1) = (1, 1, 1, 2, 2, 3, 3)†

λ(2) = (2, 2, 2, 3, 3, 1, 1)†

λ(3) = (1, 1, 2, 2, 3, 3, 3)†

λ(4) = (1, 2, ?, 1, 2, ?, ?)†

Inspection of the label vectors reveals that clusterings 1 and 2 are logically

identical. Clustering 3 introduces some dispute about objects 3 and 5. Clus-

tering 4 is quite inconsistent with all the other ones, has two groupings instead

of 3, and also contains missing data. Now let us look for a good combined clus-

tering with 3 clusters. Intuitively, a good combined clustering should share as

much information as possible with the given 4 labelings. Inspection suggests

that a reasonable integrated clustering is (2, 2, 2, 3, 3, 1, 1)† (or one of the 6

equivalent clusterings such as (1, 1, 1, 2, 2, 3, 3)†). In fact, after performing an

exhaustive search over all 301 unique clusterings of 7 elements into 3 groups,

it can be shown that this clustering shares the maximum information with the

given 4 label vectors (in terms that are more formally introduced in the next

subsection).

This simple example illustrates some of the challenges. We have already

seen that the label vector is not unique. In fact, for each unique clustering

there are k! equivalent representations as integer label vectors. However, only

one representation satisfies the following two constraints: (i) λ1 = 1; (ii) for all

i = 1, . . . , n − 1 : λi+1 ≤ maxj=1,...,i(λj) + 1. By allowing only representations

that fulfill both constraints, the integer vector representation can be forced

to be unique. Transforming the labels into this ‘canonical form’ solves the

combining problem if all clusterings are actually the same. However, if there

is any discrepancy among labelings, one has to also deal with a correspondence
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problem. In fact, there are (k!)r−1 possible association patterns. In general,

the number of clusters found as well as each cluster’s interpretation may vary

tremendously among models.

5.2.2 Objective Function for Cluster Ensembles

Given r groupings with the q-th grouping λ(q) having k(q) clusters, a consensus

function Γ is defined as a function N
n×r → N

n mapping a set of clusterings to

an integrated clustering:

Γ : {λ(q) | q ∈ {1, . . . , r}} → λ. (5.1)

We abbreviate the set of groupings Λ = {λ(q) | q ∈ {1, . . . , r}}. The optimal

combined clustering should share the most information with the original clus-

terings. But how do we measure shared information between clusterings? In

information theory, mutual information is a symmetric measure to quantify

the statistical information shared between two distributions [CT91]. Suppose

there are two labelings λ(a) and λ(b). Let there be k(a) groups in λ(a) and k(b)

groups in λ(b). Let n(h) be the number of objects in cluster Ch according to

λ(a), and nℓ the number of objects in cluster Cℓ according to λ(b). Let n
(h)
ℓ

denote the number of objects that are in cluster h according to λ(a) as well

as in group ℓ according to λ(b). Then, a [0,1]-normalized mutual information

criterion φ(NMI) is computed as follows (see appendix B.1 for details):

φ(NMI)(λ(a), λ(b)) =
2

n

k(a)
∑

ℓ=1

k(b)
∑

h=1

n
(h)
ℓ logk(a)·k(b)

(

n
(h)
ℓ n

n(h)nℓ

)

(5.2)
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Therefore, the Average Normalized Mutual Information (ANMI) between a

set of r labelings, Λ, and a labeling λ̂ is defined as follows:

φ(ANMI)(Λ, λ̂) =
1

r

r
∑

q=1

φ(NMI)(λ̂, λ(q)) (5.3)

We define the optimal combined clustering λ(k−opt) to be the one that has

maximal average mutual information with all individual labelings λ(q) in Λ

given that the number of consensus clusters desired is k. Our objective function

is average normalized mutual information (ANMI, equation 5.3), and λ(k−opt)

is defined as

λ(k−opt) = arg max
λ̂

r
∑

q=1

φ(NMI)(λ̂, λ(q)) (5.4)

where λ̂ goes through all possible k-partitions [SG02a].

There may be situations where not all labels are known for all objects,

i.e. there is missing data in the label vectors. For such cases, the consen-

sus clustering objective from equation 5.4 can be generalized by computing a

weighted average of the mutual information with the known labels, with the

weights proportional to the comprehensiveness of the labelings as measured by

the fraction of known labels. Let L(q) be the set of object indices with known

labels for the q-th labeling. Then, the generalized objective function becomes:

λ(k−opt) = arg max
λ̂

r
∑

q=1

|L(q)|φ(NMI)(λ̂L(q) , λ̂
(q)

L(q)) (5.5)

For finite populations, the trivial solution is to exhaustively search through

all possible clusterings with k labels for the one with the maximum ANMI.

However, for n objects and k partitions there are

1

k!

k
∑

ℓ=1





k

ℓ



 (−1)k−ℓℓn (5.6)
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possible clusterings, or approximately kn/k! for n ≫ k. For example, there

are 171,798,901 ways to form 4 groups of 16 objects. For 8 groups of 32

objects this number grows to over 1.75 · 1024 and for 16 groups of 64 objects

to over 4.23 · 1063. Clearly, this exponential growth in n makes a full search

prohibitive. Having defined the objective, we now propose three algorithms

to find good heuristic solutions. Note that greedy optimizations of the ANMI

objective are difficult since it is a hard combinatorial problem. So our three

proposed algorithms in this chapter have been developed from intuitive ideas

for maximizing the objective.

5.3 Efficient Consensus Functions

In this section, we introduce three efficient heuristics to solve the cluster en-

semble problem. All algorithms approach the problem by first transforming

the set of clusterings into a hypergraph representation.

Cluster-based Similarity Partitioning Algorithm (CSPA). A clustering

signifies a relationship between objects in the same cluster and can thus

be used to establish a measure of pairwise similarity. This induced simi-

larity measure is then used to recluster the objects, yielding a combined

clustering.

HyperGraph Partitioning Algorithm (HGPA). In this algorithm, we ap-

proximate the maximum mutual information objective with a constrained

minimum cut objective. Essentially, the cluster ensemble problem is

posed as a partitioning problem of a suitably defined hypergraph where

hyperedges represent clusters.
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Meta-CLustering Algorithm (MCLA). Here, the objective of integration

is viewed as a cluster correspondence problem. Essentially, groups of

clusters (meta-clusters) have to be identified and consolidated.

The following four subsections describe the common hypergraph representa-

tion, CSPA, HGPA, and MCLA. Section 5.3.5 discusses differences in the

algorithms and evaluates their performance in a controlled experiment.

5.3.1 Representing Sets of Clusterings as a Hypergraph

The first step for both of our proposed consensus functions is to transform

the given cluster label vectors into a suitable hypergraph representation. In

this subsection, we describe how any set of clusterings can be mapped to a

hypergraph. A hypergraph consists of vertices and hyperedges. An edge in a

regular graph connects exactly 2 vertices. A hyperedge is a generalization of

an edge in that it can connect any set of vertices.

For each label vector λ(q) ∈ N
n, we construct the binary membership

indicator matrix H(q) ∈ N
n×k(q)

in which each cluster is represented as a hy-

peredge (column), as illustrated in table 5.1.3 All entries of a row in the binary

membership indicator matrix H(q) add to 1, if the row corresponds to an object

with known label. Rows for objects with unknown label are all zero.

The concatenated block matrix H = H(1,...,r) = (H(1) . . . H(r)) defines

the adjacency matrix of a hypergraph with n vertices and
∑r

q=1 k(q) hyper-

edges. Each column vector ha specifies a hyperedge ha, where 1 indicates that

the vertex corresponding to the row is part of that hyperedge and 0 indicates

3When generalizing our algorithms to soft clustering, H
(q) simply contains the posterior

probabilities of cluster membership.
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λ(1) λ(2) λ(3) λ(4)

x1 1 2 1 1
x2 1 2 1 2
x3 1 2 2 ?
x4 2 3 2 1
x5 2 3 3 2
x6 3 1 3 ?
x7 3 1 3 ?

⇔

H(1) H(2) H(3) H(4)

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

v1 1 0 0 0 1 0 1 0 0 1 0
v2 1 0 0 0 1 0 1 0 0 0 1
v3 1 0 0 0 1 0 0 1 0 0 0
v4 0 1 0 0 0 1 0 1 0 1 0
v5 0 1 0 0 0 1 0 0 1 0 1
v6 0 0 1 1 0 0 0 0 1 0 0
v7 0 0 1 1 0 0 0 0 1 0 0

Table 5.1: Illustrative cluster ensemble problem with r = 4, k(1,...,3) = 3, and
k(4) = 2: Original label vectors (left) and equivalent hypergraph representation
with 11 hyperedges (right). Each cluster is transformed into a hyperedge.

that it is not. Thus, we have mapped each cluster to a hyperedge and the set

of clusterings to a hypergraph.

5.3.2 Cluster-based Similarity Partitioning Algorithm

(CSPA)

Essentially, if two objects are in the same cluster then they are considered to

be fully similar, and if not they are dissimilar. This is the simplest heuristic

and is used in the Cluster-based Similarity Partitioning Algorithm (CSPA).

With this viewpoint, one can simply reverse engineer a single clustering into a

binary similarity matrix. Similarity between two objects is 1 if they are in the

same cluster and 0 otherwise. For each clustering, a n × n binary similarity

matrix is created. The entry-wise average of r such matrices representing the

r sets of groupings yields an overall similarity matrix. Figure 5.3 illustrates

the generation of the cluster-based similarity matrix for the example given in

table 5.1.
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Alternatively, and more concisely, this can be interpreted as using k

binary cluster membership features and defining similarity as the fraction of

clusterings in which two objects are in the same cluster. The entire n × n

similarity matrix S can be computed in one sparse matrix multiplication S =

1
r
HH†.4

Now, we can use the similarity matrix to recluster the objects using

any reasonable similarity based clustering algorithm. We chose to partition

the induced similarity graph (vertex = object, edge weight = similarity) using

METIS [KK98a] because of its robust and scalable properties.

from λ(4)
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Figure 5.3: Illustration of Cluster-based Similarity Partitioning Algorithm
(CSPA) for the cluster ensemble example problem given in table 5.1. Each
clustering contributes a similarity matrix (matrix entries are shown by dark-
ness proportional to similarity). Their average is then used to recluster the
objects to yield consensus.

5.3.3 HyperGraph Partitioning Algorithm (HGPA)

The second algorithm is a direct approach to cluster ensembles that re-partitions

the data using the given clusters as indications of strong bonds. The cluster

4This approach can be extended to soft clusterings through using the objects’ posterior
probabilities cluster of cluster membership in H.
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ensemble problem is formulated as partitioning the hypergraph by cutting

a minimal number of hyperedges. We call this approach the HyperGraph

Partitioning Algorithm (HGPA). All hyperedges are considered to have the

same weight. Also, all vertices are equally weighted. Note, that this includes

nℓ-way relationship information, while CSPA only considers pairwise relation-

ships. Now, we look for a hyperedge separator that partitions the hypergraph

(figure 5.4) into k unconnected components of approximately the same size.

Equal sizes are obtained by maintaining a vertex imbalance of at most 5% as

formulated by the following constraint: k · maxℓ∈{1,...,k}
nℓ

n
≤ 1.05.

Hypergraph partitioning is a well-studied area [KL70, AK95] and algo-

rithmic details are omitted here for brevity. We use the hypergraph partition-

ing package HMETIS [KAKS97]. HMETIS gives high-quality partitions and

is very scalable. However, please note that hypergraph partitioning in general

has no provision for partially cut hyperedges. This means that there is no

sensitivity to how much of a hyperedge is left in the same group after the cut.

This can be problematic for our applications. Let us consider the example

from table 5.1. For simplicity, let us assume that only the three hyperedges

from λ(1) are present. The two partitionings {{x1, x2, x7}, {x3, x4}, {x5, x6}}
and {{x1, x7}, {x3, x4}, {x2, x5, x6}} both cut all three hyperedges. The first is

intuitively superior, because 2/3 of the hyperedge {x1, x2, x3} ‘remain’ versus

only 1/3 in the second. However, in standard hypergraph partitioning they

have equivalent quality since both cut the same number of hyperedges.
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Figure 5.4: Illustration of HyperGraph Partitioning Algorithm (HGPA) for
the cluster ensemble example problem given in table 5.1. Each hyperedge
is represented by a closed curve enclosing the vertices it connects. Hyper-
edges from the same clustering have the same color. The combined clustering
{{x1, x2, x3}, {x4, x5}, {x6, x7}} has the minimal hyperedge cut of 4 and is as
balanced as possible for 3 clusters of 7 objects.

5.3.4 Meta-CLustering Algorithm (MCLA)

In this subsection, we introduce the third algorithm to solve the cluster ensem-

ble problem. The Meta-CLustering Algorithm (MCLA) is based on clustering

clusters. It also yields object-wise confidence estimates of cluster membership.

We represented each cluster by a hyperedge. The idea in MCLA is to

group and collapse related hyperedges and assign each object to the collapsed

hyperedge in which it participates most strongly. The hyperedges that are con-

sidered related for the purpose of collapsing are determined by a graph-based

clustering of hyperedges. We refer to each cluster of hyperedges as a meta-

cluster C(M). Collapsing reduces the number of hyperedges from
∑r

q=1 k(q) to

k. The detailed steps are:
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Construct Meta-graph. Let us view all the
∑r

q=1 k(q) indicator vectors h

(the hyperedges of H) as vertices of another regular undirected graph,

the meta-graph. The edge weights are proportional to the similarity

between vertices. A suitable similarity measure here is the binary Jac-

card measure, since it is the ratio of the intersection to the union of

the sets of objects corresponding to the two hyperedges. Formally, the

edge weight wa,b between two vertices ha and hb as defined by the binary

Jaccard measure of the corresponding indicator vectors ha and hb is:

wa,b = h
†
ahb

‖ha‖2
2+‖hb‖

2
2−h

†
ahb

.

Since the clusters are non-overlapping (e.g., hard), there are no edges

amongst vertices of the same clustering H(q) and, thus, the meta-graph

is r-partite, as shown in figure 5.5.

Cluster Hyperedges. Find matching labels by partitioning the meta-graph

into k balanced meta-clusters. Each vertex is weighted proportional to

the size of the corresponding cluster. Balancing ensures that the sum

of vertex-weights is approximately the same in each meta-cluster. We

use the graph partitioning package METIS in this step. This results

in a clustering of the h vectors. Since each vertex in the meta-graph

represents a distinct cluster label, a meta-cluster represents a group of

corresponding labels.

Collapse Meta-clusters. For each of the k meta-clusters, we collapse the

hyperedges into a single meta-hyperedge. Each meta-hyperedge has an

association vector which contains an entry for each object describing

its level of association with the corresponding meta-cluster. The level

is computed by averaging all indicator vectors h of a particular meta-
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cluster.5 An entry of 0 or 1 indicates the weakest or strongest association,

respectively.

Compete for Objects. In this step, each object is assigned to its most as-

sociated meta-cluster: Specifically, an object is assigned to the meta-

cluster with the highest entry in the association vector. Ties are broken

randomly. The confidence of an assignment is reflected by the winner’s

share of association (ratio of the winner’s association to the sum of all

other associations). Note that not every meta-cluster can be guaranteed

to win at least one object. Thus, there are at most k labels in the final

combined clustering λ.

Figure 5.5 illustrates meta-clustering for the example given in table 5.1

where r = 4, k = 3, k(1,...,3) = 3, and k(4) = 2. Figure 5.5 shows the original

4-partite meta-graph. The three meta-clusters are shown in red / ◦, blue / ×,

and green / +. Consider the first meta-cluster, C(M)
1 = {h3, h4, h9} (the red/◦

markers in figure 5.5). Collapsing the hyperedges yields the object-weighted

meta-hyperedge h
(M)
1 = {v5, v6, v7} with association vector (0, 0, 0, 0, 1/3, 1, 1)†.

Subsequently, meta-cluster C(M)
1 will win the competition for vertices/objects

v6 and v7, and thus represent the cluster C1 = {x6, x7} in the resulting inte-

grated clustering. Our proposed meta-clustering algorithm robustly outputs

(2, 2, 2, 3, 3, 1, 1)†, one of the 6 optimal clusterings which is equivalent to clus-

terings λ(1) and λ(2). The uncertainty about some objects is reflected in the

confidences 3/4, 1, 2/3, 1, 1/2, 1, and 1 for objects 1 through 7, respectively.

5A weighted average can be used if the initial clusterings have associated confidences as
in soft clustering.
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Figure 5.5: Illustration of Meta-CLustering Algorithm (MCLA) for the cluster
ensemble example problem given in table 5.1. The 4-partite meta-graph is
shown. Edge darkness increases with edge weight. The vertex positions are
slightly perturbed to expose otherwise occluded edges. The three meta-clusters
are shown in red / ◦, blue / ×, and green / +.

5.3.5 Discussion and Comparison

Let us first take a look at the worst case time complexity of the proposed algo-

rithms. Assuming quasi-linear (hyper-)graph partitioners such as (H)METIS,

CSPA is O(n2kr), HGPA is O(nkr), and MCLA is O(nk2r2). The fastest is

HGPA, closely followed by MCLA since k tends to be small. CSPA is the

slowest and can become intractable for large n.

We performed a controlled experiment that allows us to compare the

properties of the three proposed consensus functions. First, a we partition

n = 500 objects into k = 10 groups at random to obtain the original clus-
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tering κ.6 We duplicate this clustering r = 10 times. Now in each of the 10

labelings, a fraction of the labels is replaced with random labels from a uniform

distribution from 1 to k. Then, we feed the noisy labelings to the proposed

consensus functions. The resulting combined labeling is evaluated in two ways.

Firstly, we measure the normalized objective function φ(ANMI)(Λ, λ) of the en-

semble output λ with all the individual labels in Λ. Secondly, we measure the

normalized mutual information of each consensus labeling with the original

undistorted labeling using φ(NMI)(κ, λ). For better comparison, we added a

random label generator as a baseline method. Also, performance measures of

a hypothetical consensus function that returns the original labels are included

to illustrate maximum performance for low noise settings.7

Figure 5.6 shows the results. As noise increases, labelings share less

information and thus maximum obtainable φ(ANMI)(Λ, λ) decreases, and so

does φ(ANMI)(Λ, λ) for all techniques. HGPA performs the worst in this exper-

iment, which we believe is due to the lacking provision of partially cut edges.

MCLA retains more φ(ANMI)(Λ, λ) than CSPA in presence of low to medium-

high noise. Interestingly, in very high noise settings CSPA exceeds MCLA’s

performance. Note also that for such high noise settings the original labels

have a lower average normalized mutual information φ(ANMI)(Λ, λ). This is

because the set of labels are almost completely random and the consensus al-

gorithms recover whatever little common information is present whereas the

original labeling is now almost fully unrelated. However, in most cases noise

should not exceed 50% and MCLA seems to perform best in this simple con-

6Labels were drawn from a uniform distribution from 1 to k. Therefore, groups are
approximately balanced.

7In low noise settings, the original labels are the global maximum, since they share the
most mutual information with the distorted labelings.

146



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise fraction induced in set of labelings

a
v
e

ra
g

e
 m

u
tu

a
l 
in

fo
rm

a
ti
o

n
 o

f 
e

n
s
e

m
b

le
 o

u
tp

u
t 

w
it
h

 s
e

t 
o

f 
n

o
is

y
 l
a

b
e

lin
g

s

random labels
CSPA
HGPA
MCLA
original labels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise fraction induced in set of labelings

m
u

tu
a

l 
in

fo
rm

a
ti
o

n
 o

f 
e

n
s
e

m
b

le
 o

u
tp

u
t 

w
it
h

 o
ri
g

in
a

l 
la

b
e

ls

random labels
CSPA
HGPA
MCLA
original labels

Figure 5.6: Comparison of consensus functions in terms of the objective func-
tion φ(ANMI)(Λ, λ) (top) and in terms of their normalized mutual information
with original labels φ(NMI)(κ, λ) (bottom) for various noise levels. A fitted
sigmoid (least squared error) is shown for all algorithms to show the trend.
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trolled experiment. Figure 5.6 illustrates how well the algorithms can recover

the true labeling in the presence of noise for robust clustering. As noise in-

creases labelings share less information with the true labeling and thus the

ensemble’s φ(NMI)(κ, λ) decreases. The ranking of the algorithms is the same

using this measure with MCLA best, followed by CSPA, and HGPA worst. In

fact, MCLA recovers the original labeling at up to 35% noise in this scenario!

For less than 50%, the algorithms have the same ranking regardless of whether

φ(ANMI)(Λ, λ) or φ(NMI)(κ, λ) is used. This indicates that our proposed objec-

tive function φ(ANMI)(Λ, λ) is indeed appropriate since in real applications, κ

and, thus, φ(NMI)(κ, λ) is not available.

This experiment indicates that MCLA should be best suited in terms

of time complexity as well as quality. In the applications and experiments

described in the following sections we observe that each combining method can

result in a higher ANMI than the others for particular setups. In fact, we found

that MCLA tends to be best in low noise/diversity settings and HGPA/CSPA

tend to be better in high noise/diversity settings. This is because MCLA

assumes that there are meaningful cluster correspondences which is more likely

to be true when there is little noise and less diversity. Thus, it is useful to

have all three methods.

Indeed, our objective function has an added advantage that it allows

one to add a stage that selects the best consensus function without any su-

pervision information, by simply selecting the one with the highest ANMI. So,

for the experiments in this chapter, we first report the results of this ‘supra’-

consensus function Γ, obtained by running all three algorithms, CSPA, HGPA

and MCLA, and selecting the one with the greatest ANMI. Then, if there are

significant differences or notable trends observed among the three algorithms,
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this further level of detail is described. Note that the supra-consensus func-

tion is completely unsupervised and avoids the problem of selecting the best

combiner for a data-set beforehand.

5.4 Cluster Ensemble Applications and Exper-

iments

Consensus functions enable a variety of new approaches to several problems.

After introducing the data-sets used and the evaluation methodology, in sub-

section 5.4.3 we illustrate how robustness of clustering can be increased through

combining a set of clusterings. In subsection 5.4.4, we discuss how distributed

clustering can be performed when each entity only has access to a very limited

subset of features. Finally, subsection 5.4.5 shows how one can operate on

several very limited subset of objects and combine them afterwards thereby

enabling distributed clustering.

5.4.1 Data-sets

We illustrate the cluster ensemble applications on two real and two artificial

data-sets. In table 5.2 some basic properties of the data-sets (left) and param-

eter choices (right) are summarized. The first data-set (2D2K) was artificially

generated and contains 500 points each of two 2-dimensional (2D) Gaussian

clusters with means (−0.227, 0.077)† and (0.095, 0.323)† and equal variance of

0.1. The second data-set (8D5K) contains 1000 points from 5 multivariate Gaus-

sian distributions (200 points each) in 8D space. Again, clusters all have the

same variance (0.1), but different means. Means were drawn from a uniform
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distribution within the unit hypercube. Both artificial data-sets are illustrated

in appendix A.1 and are available for download at http://strehl.com/.

The third data-set (PENDIG, appendix A.3) is for pen-based recognition

of handwritten digits. It is publicly available from the UCI Machine Learning

Repository and was contributed by Alpaydin and Alimoglu. It contains 16

spatial features for each of the 7494 training and 3498 test cases (objects).

There are ten classes of roughly equal size (balanced clusters) in the data

corresponding to the digits 0 to 9.

The fourth data-set is for text clustering. The 20 original Yahoo!

news categories in the data are Business, Entertainment (no sub-category,

art, cable, culture, film, industry, media, multimedia, music, online,

people, review, stage, television, variety), Health, Politics, Sports,

Technology. The data is publicly available from ftp://ftp.cs.umn.edu/

/dept/users/boley/ (K1 series) and was used in [BGG+99, SGM00]. The

raw 21839 × 2340 word-document matrix consists of the non-normalized occur-

rence frequencies of stemmed words, using Porter’s suffix stripping algorithm

[FBY92]. Pruning all words that occur less than 0.01 or more than 0.10 times

on average because they are insignificant (e.g., haruspex) or too generic (e.g.,

new), respectively, results in d = 2903. We call this data-set YAHOO (see also

appendix A.5).

For 2D2K, 8D5K, and PENDIG we use k = 2, 5, and 10, respectively.

When clustering YAHOO, we use k = 40 clusters unless noted otherwise. We

chose two times the number of categories, since this seemed to be the more

natural number of clusters as indicated by preliminary runs and visualization.8

8Using a greater number of clusters than categories can be viewed as allowing multi-
modal distributions for each category. For example, in a noisy XOR problem, there are two
categories, but four clusters.
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For 2D2K, 8D5K, and PENDIG we use Euclidean-based similarity. For YAHOO we

use cosine-based similarity.

name features #features #categories balance similarity #clusters
2D2K real 2 2 1.00 Euclidean 2
8D5K real 8 5 1.00 Euclidean 5

PENDIG real 16 10 0.87 Euclidean 10
YAHOO ordinal 2903 20 0.24 Cosine 40

Table 5.2: Overview of data-set properties and parameters for cluster ensemble
experiments. Balance is defined as the ratio of the average category size to
the largest category size.

5.4.2 Evaluation Criterion

Evaluation of the quality of a clustering is a non-trivial and often ill-posed

task. In fact, many definitions of objective functions for clusterings exist

[JD88]. Internal criteria formulate quality as a function of the given data

and/or similarities. For example, the mean squared error criterion (for k-

means) and other measures of compactness are popular evaluation criteria.

Measures can also be based on isolation such as the min-cut criterion, which

uses the sum of edge weights across clusters (for graph partitioning). When

using internal criteria, clustering becomes an optimization problem, and a

clusterer can evaluate its own performance and tune its results accordingly.

External criteria on the other hand impose quality by additional, ex-

ternal information not given to the clusterer, such as category labels. This is

sometimes more appropriate since groupings are ultimately evaluated exter-

nally by humans. For example, when objects have already been categorized by

151



an external source, i.e. when class labels are available, we can use information

theoretic measures to quantify the match between the categorization and the

clustering. Previously, average purity and entropy-based measures to assess

clustering quality from 0 (worst) to 1 (best) have been used [BGG+99]. While

average purity is intuitive to understand, it is biased to favor small clusters.

Singletons, in fact, are scored as perfect. Also, a monolithic clustering (one

single cluster for all objects) receives a score as high as the maximum category

prior probability. In unstratified data-sets, this prior might be close to 1, while

the desired value should be close to 0. An entropy-based measure is better

than purity but is still biased towards small clusters (e.g., a set of singletons

is always considered perfect).

Using a measure based on normalized mutual information (equation

5.2) fixes both biases (see chapter 4): Monolithic clusterings are evaluated

at 0 and singletons are severely discounted compared to the best clustering.9

However, the mutual information for the best clustering is smaller than 1

unless all categories have equal prior probabilities. Thus, mutual information

provides an unbiased and conservative measure as compared to purity and

entropy. Given g categories (or classes), we use the categorization labels κ to

evaluate the cluster quality using mutual information φ(NMI)(κ, λ), as defined

in equation 5.2.

5.4.3 Robust Centralized Clustering (RCC)

A consensus function can introduce redundancy and foster robustness when,

instead of choosing or fine-tuning a single clusterer, an ensemble of clusterers

9For the purpose of this discussion, the best clustering is equivalent to the categorization.

152



is employed and their results are combined. This is particularly useful when

clustering has to be performed in a closed loop without human interaction.

The goal of Robust Centralized Clustering (RCC) is to do well for a wide

variety of data distributions with a fixed ensemble of clusterers.

In RCC, each clusterer has access to all features and to all objects. How-

ever, each clusterer might take a different approach. In fact, approaches should

be very diverse for best results. They can use different distance/similarity

measures (e.g., Euclidean, cosine) or techniques (graph-based, agglomerative,

k-means) (see chapter 4). The ensemble’s clusterings are then integrated using

the consensus function Γ without access to the original features.

To show that RCC can yield robust results in low-dimensional metric

spaces as well as in high-dimensional sparse spaces without any modifications,

the following experiment was set up. First, 10 diverse clustering algorithms

were implemented: (1) self-organizing map; (2) hypergraph partitioning; k-

means with distance based on (3) Euclidean, (4) cosine, (5) correlation, and

(6) extended Jaccard; and graph partitioning with similarity based on (7)

Euclidean, (8) cosine, (9) correlation, and (10) extended Jaccard. Implemen-

tational details of the individual algorithms can be found in chapter 4.

RCC was performed 10 times each on sample sizes of 50, 100, 200,

400, and 800, for each data-set. Different sample sizes provide insight how

cluster quality improves as more data becomes available. Quality improvement

depends on the clusterer as well as the data. For example, more complex

data-sets require more data until quality maxes out. We also computed a

random clustering for each experiment to establish a baseline performance.

The quality in terms of difference in mutual information as compared to the

random clustering algorithm for all 11 approaches (10 + consensus) is shown
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in figure 5.7. Figure 5.8 shows learning curves for the average quality of the

10 algorithms versus RCC.

In figure 5.7(top row) the results for the 2D2K data using k = 2 are

shown. From an external viewpoint, the consensus function was given seven

good (Euclidean, cosine, and extended Jaccard based k-means as well as graph

partitioning, and self-organizing feature-map) and three poor (hypergraph par-

titioning, correlation based k-means, and correlation based graph partitioning)

clusterings. At sample size of n = 800, the RCC results are better than all

individual algorithm quality evaluations. There is no noticeable deterioration

caused by the poor clusterings. The average RCC quality at 0.85 is 48% higher

than the average quality of all individual algorithms (excluding random) at

0.57.

In case of the YAHOO data (figure 5.7(bottom row)) the consensus func-

tion received three poor clusterings (Euclidean based k-means as well as graph

partitioning; and self-organizing feature-map10), four good (hypergraph parti-

tioning, cosine, correlation, and extended Jaccard based k-means) and three

excellent (cosine, correlation, and extended Jaccard based graph partitioning)

clusterings. The RCC results are almost as good as the average of the excel-

lent clusterers despite the presence of distractive clusterings. In fact, at the

n = 800 level, RCC’s average quality of 0.38 is 19% better than the average

qualities of all the other algorithms (excluding random) at 0.32. This shows

that for this scenario, too, cluster ensembles work well and also are robust!

Similar results are obtained for 8D5K and PENDIG. In these two cases all

individual approaches work comparably well except for hypergraph partition-

10In fact, the self-organizing feature-map yielded sub-random quality. This is due to the
fact that it produced incoherent as well as imbalanced clusters.
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ing. The supra-consensus function learns to ignore hypergraph partitioning

results and yields a consensus clustering of good quality.

Figure 5.8 shows how RCC is consistently better in all four scenarios

than picking a random / average single technique. Looking at the three con-

sensus techniques, the need for all of them becomes apparent since there is

no ubiquitous winner. In 2D2K, 8D5K, and PENDIG, MCLA generally had the

highest ANMI, followed by CSPA, while HGPA performed poorly. In YAHOO,

both CSPA and HGPA, had the highest ANMI approximately equally often,

while MCLA performed poorly. We believe this is due to the fact that there

was higher diversity in YAHOO clusterings and CSPA and HGPA are better

suited for that because no cluster correspondence is assumed.

The experimental results clearly show that cluster ensembles can be

used to increase robustness in risk-intolerant settings. Especially, since it is

generally hard to evaluate clusters in high-dimensional problems, a cluster en-

semble can be used to ‘throw’ many models at a problem and then integrate

them using an consensus function to yield stable results. Thereby the user does

not have to have, e.g., category labels to pick a single best model. Rather the

ensemble automatically ‘focuses’ on whatever is most appropriate for the given

data. In our experiments, there is diversity as well as some poorly perform-

ing clusterers. If there are diverse but comparably performing clusterers, the

quality actually significantly outperforms the best individual clusterer, as we

will see in the next section.
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Figure 5.7: Detailed Robust Consensus Clustering (RCC) results. Learn-
ing curves for 2D2K (top row), 8D5K (second row), PENDIG (third row), and
YAHOO (bottom row) data. Each learning curve shows the difference in mutual
information-based quality φ(NMI) compared to random for 5 sample sizes (at
50, 100, 200, 400, and 800). The bars for each data-point indicate ±1 stan-
dard deviations over 10 experiments. Each column corresponds to a particular
clustering algorithm. The rightmost column gives RCC quality for combin-
ing results of all other 10 algorithms. RCC yields robust results in all four
scenarios.
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Figure 5.8: Summary of RCC results. Average learning curves and RCC
learning curves for 2D2K (a), 8D5K (b), PENDIG (c), and YAHOO (d) data. Each
learning curve shows the difference in mutual information-based quality φ(NMI)

compared to random for 5 sample sizes (at 50, 100, 200, 400, and 800). The
bars for each data-point indicate ±1 standard deviations over 10 experiments.
The upper curve gives RCC quality for combining results of all other 10 al-
gorithms. The lower curve is the average performance of the 10 algorithms.
RCC yields robust results in any scenario.
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5.4.4 Feature-Distributed Clustering (FDC)

In Feature-Distributed Clustering (FDC), we show how cluster ensembles can

be used to boost quality of results by combining a set of clusterings obtained

from partial views of the data. As mentioned in the introduction, such sce-

narios result in distributed databases and federated systems that cannot be

pooled into one big flat file because of proprietary data aspects, privacy con-

cerns, performance issues, etc. In such situations, it is more realistic to have

one clusterer for each database and transmit only the cluster labels (but not

the attributes of each record) to a central location where they can be combined

using the supra-consensus function.

For our experiments, we simulate such a scenario by running several

clusterers, each having access to only a restricted, small subset of features

(subspace). Each clusterer has a partial view of the data. Each clusterer has

access to all objects. The clusterers find groups in their views/subspaces using

the same clustering technique. In the combining stage, individual results are

integrated using our supra-consensus function to recover the full structure of

the data. As this is a knowledge-reuse framework, the ensemble has no access

to the original features.

First, let us discuss experimental results for the 8D5K data, since they

lend themselves well to illustration. We create 5 random 2D views (through

selection of a pair of features) of the 8D data, and use Euclidean-based graph

partitioning with k = 5 in each view to obtain 5 individual clusterings. The

5 individual clusterings are then combined using our supra-consensus function

proposed in the previous section. The clusters are linearly separable in the

full 8D space and clustering in the 8D space yields the original generative la-
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Figure 5.9: Illustration of Feature-Distributed Clustering (FDC) on 8D5K data.
Each row corresponds to a random selection of 2 out of 8 feature dimensions.
For each of the 5 chosen feature pairs, a row shows the clustering (colored)
obtained on the 2D subspace spanned by the selected feature pair (left) and
visualizes these clusters on the plane of the global 2 principal components
(right).
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Figure 5.10: Reference clustering (a) and FDC consensus clustering (b) of
8D5K data. Data points are projected along the first 2 principal components of
the 8D data. The reference clustering is obtained by graph partitioning using
Euclidean similarity in original 8D space and is identical to the generating
distribution assignment. The consensus clustering is derived from the combi-
nation of 5 clusterings, each obtained in 2D (from random feature pairs, see
figure 5.9). The consensus clustering (b) is clearly superior compared to any
of the 5 individual results (figure 5.9(right)) and is almost flawless compared
to the reference clustering (a).

bels and is referred to as the reference clustering. Using PCA to project the

data into 2D separates all 5 clusters fairly well (figure 5.10). In figure 5.10(a),

the reference clustering is illustrated by coloring the data points in the space

spanned by the first and second principal components (PCs). Figure 5.10(b)

shows the final FDC result after combining 5 subspace clusterings. Each clus-

tering has been computed from random feature pairs. These subspaces are

shown in figure 5.9. Each of the rows corresponds to a random selection of

2 out of 8 feature dimensions. For each of the 5 chosen feature pairs, a row

shows the 2D clustering (left, feature pair shown on axis) and the same 2D

clustering labels used on the data projected onto the global 2 principal com-

ponents (right). For consistent appearance of clusters across rows, the dot

colors / shapes have been matched using meta-clusters. All points in clusters

of the same meta-cluster share the same color / shape amongst all plots. In
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any subspace, the clusters can not be segregated well due to strong overlaps.

The supra-consensus function can combine the partial knowledge of the 5 clus-

terings into a far superior clustering. FDC (figure 5.10(b)) are clearly superior

compared to any of the 5 individual results (figure 5.9(right)) and is almost

flawless compared to the reference clustering (figure 5.10(a)). The best indi-

vidual result has 120 ‘mislabeled’ points while the consensus only has 3 points

‘mislabeled’.

input and parameters quality
data sub- # upper bound all features consensus max subspace average subs. min subspace

space models φ(NMI) φ(NMI) φ(NMI) maxq φ(NMI) avgqφ(NMI) minq φ(NMI)

#dims r (κ, κ) (κ, λ(all)) (κ, λ) (κ, λ(q)) (κ, λ(q)) (κ, λ(q))
2D2K 1 3 1.00000 0.84747 0.68864 0.68864 0.64145 0.54706
8D5K 2 5 1.00000 1.00000 0.98913 0.76615 0.69822 0.62134
PENDIG 4 10 0.99736 0.67715 0.59009 0.53197 0.44625 0.32598
YAHOO 128 20 0.86602 0.44763 0.38167 0.21403 0.17075 0.14582

Table 5.3: Feature-Distributed Clustering (FDC) results. The consensus clus-
tering is as good as or better than the best individual subspace clustering for
all four data-sets.

We also conducted FDC experiments on the other three data-sets. Table

5.3 summarizes the results and several comparison benchmarks. The choice of

the number of random subspaces r and their dimensionality is currently driven

by the user. For example, in the YAHOO case, 20 clusterings were performed

in 128-dimensions (occurrence frequencies of 128 random words) each. The

average quality amongst the results was 0.17 and the best quality was 0.21.

Using the supra-consensus function to combine all 20 labelings yields a quality

of 0.38, or 124% higher mutual information than the average individual clus-

tering. In all scenarios, the consensus clustering is as good or better than the

best individual input clustering and always better than the average quality

of individual clusterings. When processing on the all features is not possible
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and only limited views exist, a cluster ensemble can boost results significantly

compared to individual clusterings. Also, since the combiner has no feature

information, the consensus clustering tends to be poorer than the clustering

on all features. However, as discussed in the introduction, in knowledge-reuse

application scenarios, the original features are unavailable, so a comparison to

an all-feature clustering is only done as a reference.

The supra-consensus function chooses either MCLA and CSPA results

but the difference is not statistically significant. As noted before MCLA is

much faster and should be the method of choice if only one is needed. HGPA

delivers poor ANMI for 2D2K and 8D5K but improves with more complex data

in PENDIG and YAHOO. However, MCLA and CSPA performed significantly

better than HGPA for all four data-sets.

5.4.5 Object-Distributed Clustering (ODC)

A dual to the application described in the previous section, is Object-Distribut-

ed Clustering (ODC). In this scenario, individual clusterers have a limited

selection of the object population but have access to all the features of the

objects it is provided with.

This is somewhat more difficult than FDC, since the labelings are par-

tial. Because there is no access to the original features, the combiner Γ needs

some overlap between labelings to establish a meaningful consensus11. Object-

distribution can naturally result from operational constraints in many applica-

tion scenarios. For example, datamarts of individual stores of a retail company

may only have records of visitors to that store, but there are enough people

11When features are available as in previously considered distributed data mining scenarios
[KPHJ99], one can e.g., merge partitions based on their centroids to reach consensus.
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who visit more than one store of that company to result in the desired over-

lap. On the other hand, even if all the data is centralized, one may artificially

‘distribute’ them in the sense of running clustering algorithms on different but

overlapping samples (record-wise partitions) of the data, and then combine

the results as this can provide a computational speedup when the individual

clusterers have super-linear time complexity.

In this subsection, we will discuss how one can use consensus functions

on overlapping sub-samples. We propose a wrapper to any clustering algorithm

that simulates a scenario with distributed objects and a combiner that does

not have access to the original features. In ODC, we introduce an object

partitioning and a corresponding clustering merging step. The actual clustering

is referred to as inner loop clustering. In the pre-clustering partitioning step

Π, the entire set of objects X is decomposed into p overlapping partitions π:

X Π→ {π(q) | q ∈ {1, . . . , p}} (5.7)

Two partitions π(a) and π(b) are overlapping iff |π(a) ∩ π(b)| > 0.12 Also, a set

of partitions provides full coverage iff X =
⋃p

q=1 π(q).

The ODC framework is parametrized by p, the number of partitions,

and l, the degree of overlap ranging between 0 and 1. No overlap, or l = 0,

yields disjoint partitions and, by design, l = 1 implies p-fold fully overlap-

ping (identical) samples. Instead of l, one can use the parameter v > 1 to

fix the total number of points processed in all p partitions combined to be

(approximately) vn. This is accomplished by choosing l = (v − 1)/(p − 1).

Let us assume that the data is not ordered, so any contiguous indexed

subsample is equivalent to a random subsample. Every partition should have

12Overlap assures that the meta-graph in MCLA is connected, e.g. a path between any
pair of hyperedges/clusters exists.
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the same number of objects for load balancing. Thus, in any partition π there

are |π| = ⌈p−1
p

nl⌉+⌈n
p
⌉ objects. Now that we have the number of objects |π| in

each partition, let us propose a simple coordinated sampling strategy: For each

partition there are ⌈n/p⌉ objects deterministically picked so that the union of

all p partitions provides full coverage of all n objects. The remaining objects

for a particular partition are then picked randomly without replacement from

the objects not yet in that partition. There are many other ways of coordinated

sampling. In this chapter we will limit our discussion to this one strategy for

brevity.

Each partition is processed by independent, identical clusterers (chosen

appropriately for the application domain). For simplicity, we use the same

k in the sub-partitions. The post-clustering merging step is done using our

supra-consensus function Γ.

{λ(q) | q ∈ {1, . . . , p}} Γ→ λ (5.8)

Since every partition only looks at a fraction of the data, there are missing

labels in the λ(q)’s. Given sufficient overlap, the supra-consensus function Γ

ties the individual clusters together and delivers a consensus clustering.

We performed the following experiment to demonstrate how the ODC

framework can be used to perform clustering on partially overlapping samples

without access to the original features. We use graph partitioning as the

clusterer in each processor and vary the number of partitions from 2 to 72 with

v = 2. Figure 5.11 shows our results for the four data-sets. Each plot in figure

5.11 shows the relative mutual information (fraction of mutual information

retained as compared to the reference clustering on all objects and features)

as a function of the number of partitions. We fix the sum of the number of
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objects in all partitions to be double the number of objects (v = 2). Within

each plot, p ranges from 2 to 72 and each ODC result is marked with a ‘◦’.
The reference point for unpartitioned data is marked by ‘×’ at (1,1). For each

of the plots, we fitted a sigmoid function to summarize the behavior of ODC

for that scenario.

Clearly, there is a tradeoff in the number of partitions versus quality.

As p approaches vn, each clusterer only receives a single point and can make

no reasonable grouping. For example, in the YAHOO case, for v = 2 processing

on 16 partitions still retains around 90% (80%) of the full quality. For less

complex data-sets, such as 2D2K, combining 16 partial partitionings (v = 2)

still yields 90% of the quality. In fact, 2D2K can be clustered in 72 partitions

at 80% quality. Also, we observed that for easier data-sets there is a smaller

absolute loss in quality for more partitions p.

Regarding our proposed techniques, all three algorithms achieved simi-

lar ANMI scores without significant differences for 8D5K, PENDIG, and YAHOO.

HGPA had some instabilities for the 2D2K data-set delivering inferior consensus

clusterings compared to MCLA and CSPA.

In general, we believe the loss in quality with p has two main causes.

First, through the reduction of considered pairwise relations, the problem is

simplified as speedup increases. At some point too much relationship infor-

mation is lost to reconstruct the original clusters. The second factor is related

to the balancing constraints used by the graph partitioner in the inner loop:

the sampling strategies cannot maintain the balancing, so enforcing them in

clustering hurts quality. A relaxed inner loop clusterer might improve results.

Distributed clustering using a cluster ensemble is particularly useful
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Figure 5.11: Object-Distributed Clustering (ODC) results. Clustering quality
(measured by relative mutual information) as a function of the number of
partitions, p, on various data-sets: (a) 2D2K; (b) 8D5K; (c) PENDIG; (d) YAHOO.
The sum of the number of samples over all partitions is fixed at 2n. Each
plot contains experimental results using graph partitioning in the inner loop
for p = [2, . . . , 72] and a fitted sigmoid (least squared error). Processing time
can be reduced by a factor of 4 for the YAHOO data while preserving 80% of
the quality (p = 16).
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when the inner loop clustering algorithm has superlinear complexity (> O(n))

and a fast consensus function (such as MCLA and HGPA) is used. In this

case, additional speedups can be obtained through distribution of objects.

Let us assume that the inner loop clusterer has a complexity of O(n2) (e.g.,

similarity-based approaches or efficient agglomerative clustering) and one uses

only MCLA and HGPA in the supra-consensus function.13 We define speedup

as the computation time for the full clustering divided by the time when us-

ing the ODC approach. The overhead for the MCLA and HGPA consensus

functions grows linear in n and is negligible compared to the O(n2) clustering.

Hence the sequential speedup is approximately s(ODC−SEQ) = p
v2 . Each par-

tition can be clustered without any communication on a separate processor.

At integration time only the n-dimensional label vector (instead of e.g., the

entire n× n similarity matrix) has to be transmitted to the combiner. Hence,

ODC does not only save computation time, but also enables trivial p-fold par-

allelization. Consequently the sequential speedup can be multiplied by p if a

p-processor computer is utilized: s(ODC−PAR) = p2

v2 . An actual speedup (s > 1)

will be reached for p > v2 in the sequential or p > v in the parallel case. For

example, when p = 4 and v = 2 (which implies l = 1/3) the computing time is

approximately the same (s = 1) because each partition is half the original size

n/2 and consequently processed in a quarter of the time. Since there are four

partitions, ODC takes the same time as the original processing. In our exper-

iments, using partitions from 2 to 72 yield corresponding sequential (parallel)

speedups from 0.5 (1) to 18 (1296). For example, 2D2K (YAHOO) can be sped

up 64-fold using 16 processors at 90% (80%) of the full length quality. In fact,

2D2K can be clustered in less that 1/1000 of the original time at 80% quality.

13CSPA is O(n2) and would reduce speedups obtained by distribution.
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5.5 Summary

In this chapter we introduced the cluster ensemble problem and provided three

effective and efficient algorithms to solve it. We defined a mutual information

based objective function that enables us to automatically select the best solu-

tion from several algorithms and allows one to build a supra-consensus function

as well. We conducted experiments to show how cluster ensembles can be used

to introduce robustness, speed-up superlinear clustering algorithms, and dra-

matically improve ‘sets of subspace clusterings’ for a large variety of domains.

In document clustering of Yahoo! web-pages we showed that combining e.g. 20

clusterings each obtained from only 128 random words can more than double

quality compared to the best single result. Some of the algorithms and data-

sets are available for download at http://strehl.com/. Indeed, the cluster

ensemble is a very general framework and enables a wide range of applications.

We are especially interested in new applications for knowledge reuse and for

distributed clustering.
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Chapter 6

Concluding Remarks

I never think of the future. It comes soon enough.

– Albert Einstein1

6.1 Summary of Contributions

In this dissertation, cluster analysis was extended in several directions driven

by information-rich, complex data. Real-life objects are often characterized

by an abundance of features as well as taxonomies from a variety of views and

times. The main contributions of this dissertation are summarized in figure 6.1.

The contributions are organized along three areas of cluster analysis activities,

namely applications, algorithms, and result assessment.

Transactional shopping records motivated us to develop better analysis

tools than the available tools such as a-priori association rule mining or k-

means. We developed a relationship-based clustering framework that relies only

on pairwise similarities to side-step the curse of dimensionality. In this spirit,

1In interview given aboard the liner Belgenland, New York, December 1930
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Cluster Ensembles

Post−processing EnhancementsApplication−driven Progress 

Value−balancing (Retail, Web)

Mutual Information Evaluation

Sparse Seriation Visualization

CLUSTER ANALYSIS

Relationship−based Graph−part.

New & Improved Algorithms

Meta−clustering Algorithm

Hypergraph−partitioning Algo.

Cluster−based Sim. Part. Algo.

Distributed Clustering

Cluster Knowledge Reuse

Robustness by Multi−clustering

Figure 6.1: Summary of contributions in this dissertation.

we developed an intuitive clustering visualization using sparse seriation of the

pairwise similarity matrix. We improved similarity measures by proposing

and analyzing an extended Jaccard similarity measure. In the retail domain,

we also introduced application-driven constraints of value-balancing to cluster

analysis (e.g., clusters have approximately equal total revenue or number of

customers). These constraints turned out to be useful in a variety of other

domains such as clustering web-sessions and text documents.

In our work with text document data, the availability of human en-

gineered document taxonomies inspired a clustering performance evaluation

measure based on mutual information. The results obtained through this

framework showed that relationship-based clustering is indeed superior when
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appropriate domain-specific similarities are chosen.

When a multitude of taxonomies is already present, one might just

want to reuse such existing knowledge and integrate previous results instead of

starting from scratch. This led us to develop cluster ensembles, an approach

to adopt multi-learner systems for clustering. We proposed a formal cluster

ensemble problem and developed three effective and efficient algorithms to

solve it. This combiner framework is useful in a variety of applications besides

knowledge reuse. For example, it enables distributed clustering and can provide

robustness through multiple clusterings.

6.2 Future Work

There are several directions for future research on relationship-based learning

frameworks. This section highlights some of the promising directions. We

will first discuss some theoretical and algorithmic improvements of cluster

ensembles and conclude with a selection of particularly interesting application

domains.

6.2.1 Greedy Maximization for Cluster Ensembles

The Average Normalized Mutual Information (ANMI) objective defines the

purpose of the cluster ensemble as proposed in chapter 5. We desire a more

thorough theoretical analysis of ANMI to better understand its properties

and develop better optimization schemes. Investigating the ANMI objective

might also result in a better understanding of the biases of the three proposed

consensus functions.
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Based on this, we plan to explore greedy optimization schemes. As an

enhancement for our proposed consensus functions in applications where n is

not too large, a greedy post-processing step can be used to refine the best

labeling of the three algorithms from section 5.2 as follows: For each object,

we exchange the current label with any of the k − 1 possible other labels and

evaluate the ANMI objective. If the ANMI increases, we change the object’s

label to the best new value and repeat the trials. Thereby we greedily optimize

the objective through single label changes. When for all objects there is no

label change that improves the objective, a local optimum has been reached

and this is the final consensus labeling. Like all local optimization procedures,

there is a strong dependency on the initialization. Running this greedy search

starting with a random labeling is often computationally intractable and tends

to result in poor local optima. However, using the best of the three consensus

functions as an initialization, the greedy search might work well. Preliminary

experiments indicate that this post-processing affects between 0% - 5% of the

labels and yields slightly improved results. Adaptive step sizes (e.g., mod-

ifying larger label segments / blocks) and less local search techniques (e.g.,

maintaining a population of current consensus clusterings instead of just one)

might be promising to investigate for greedy search.

Related work on integer programming techniques, Independent Com-

ponent Analysis (ICA), and Maximum Mutual Information (MMI) techniques

might also yield insights towards direct optimization of the objective.

We also explored extending the ANMI objective to be computed from

sets of soft clusterings which yields a smooth (numerically differentiable) input

space. However, preliminary experiments using gradient ascent techniques on

the continuous cluster association input space failed. This is probably due to
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the objective not being well behaved and the large dimensionality of the input

space for optimization.

6.2.2 Soft Cluster Ensembles

While the three consensus functions proposed are designed to also work with

soft clustering inputs, we have not conducted an experimental study to eval-

uate their behavior in that scenario. Possibly, soft clustering ensembles will

perform superior to hard clustering ensembles since the confidences on cluster

memberships can be leveraged to combine clusterings in a risk-aware fashion.

One can also extend the combiners to output soft consensus cluster-

ings. In fact, the Meta-CLustering Algorithm (MCLA) already computes soft

consensus clusterings, and the Cluster-based Similarity Partitioning Algorithm

(CSPA) and the HyperGraph Partitioning Algorithm (HGPA) can be extended

to do so.

6.2.3 Feature-augmented Cluster Ensembles

In cluster ensembles, we reuse only previous labelings and do not allow access

to the original features. In many application, at least limited information from

the original features is available at the combination stage. Primarily this is

the case when the set of clusterings is generated by intentional splitting of the

data.

Using extra feature information might further boost results and allow

the cluster ensemble to be applied in a wider class of knowledge reuse appli-

cations. For example, in distributed clustering the minimum information for

consolidation are the individual labelings. Adding extra feature information
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such as cluster centroids to augment the cluster ensemble can possibly improve

results significantly.

6.2.4 Distributed Clustering

In this dissertation, we propose cluster ensembles and show how this allows

distributed clustering without sharing of actual features. The ability to do this

analysis without access to the primary data opens opportunities for performing

data mining on knowledge maintained in multiple clients without them reveal-

ing their data to other clients. Despite these restrictions, the combiner can

discover knowledge that could not be discovered by any single client. Cluster

ensembles can be used to develop a federated data mining system that en-

sures privacy and security without requiring that clients send their data to the

system or to other clients.

For federated systems, we want to extend our application scenarios. In

real scenarios, a variety of hybrids of the investigated RCC, FDC, and ODC

scenarios can be encountered. Cluster ensembles could enable federated data

mining systems working on top of distributed and heterogeneous databases.

In particular, one can study the impact of the coordinated subsampling

strategies on the performance and quality of object distributed clustering. The

question is to determine what types of overlap and object ownership structures

lend themselves particularly well for knowledge reuse.

A key requirement of data mining techniques is that they must scale

to large-scale data-sets. Distributed processing can be used as a tool to scale

complex algorithms to large data-sets. As discussed in chapter 5, cluster en-

sembles can be used in such a scenario to trade-off quality for speed. The
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proposed cluster ensemble requires no communication during the individual

grouping. However, when extending cluster ensembles such that individual

clusterers share object features in the inner loop as well as with the combining

stage, several designs of inter-processor communication can be made. This

might make it interesting to revisit the speedup versus quality tradeoff.

6.2.5 Bioinformatics

Molecular biologists are currently engaged in some of the most impressive

data collection projects. Recent genome-sequencing projects are generating an

enormous amount of data related to the function and structure of biological

molecules and sequences. The interpretation of this wealth of data may deeply

affect our understanding of life at the molecular level. Important problems

for which cluster analysis might be very successful include the prediction of

protein structure and function, semi-automated drug design, interpretation of

nucleotide sequences, and knowledge acquisition from genetic data.

In micro-array data, for example, an object could be a gene, while a fea-

ture could be the level of expression of that gene under a particular condition.

There typically are thousands of genes under hundreds of conditions. This

data shares many of the properties of the high-dimensional data investigated

in this dissertation and the relationship-based clustering approach proposed

in chapters 3 and 4 seems promising for finding interesting genes, for example.

Also, the multitude of experimental results available to industrial gene

expression researchers warrants the investigation of applications of cluster en-

sembles as proposed in chapter 5 to integrate and consolidate previous parti-

tions of genes by function. Thereby cluster ensembles can yield robust results
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that ‘smooth’ out variations in the individual experiments without requiring

researchers to integrate their entire primary data.
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Appendix A

Data-sets

Data is a lot like humans: It is born. Matures. Gets married

to other data, divorced. Gets old. One thing that it

doesn’t do is die. It has to be killed.

– Arthur Miller1

In the following, some of the data-sets used in this dissertation are illustrated.

1In speech on Annual Seminar of the American Society for Industrial Security, Boston,
September 1988
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A.1 Gaussian Data-sets
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Figure A.1: 2D2K data-set. The two Gaussians overlap.
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Figure A.2: 8D5K data-set. While the Gaussians overlap in the partial 2D
views shown, they are not overlapping in the full 8D space.
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A.2 Iris Data-set
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Figure A.3: IRIS data-set. The data contains 4 measurements taken for each
of 150 iris flowers.
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A.3 Pen Digits Data-set

Figure A.4: Pen digits data-set PENDIG. 1500 (of 7494) samples of the hand-
written numerals 0-9 are plotted in gray arranged by their classes. Their mean
is shown superimposed with bold black.
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4 (100%) 4 (67%)    9 (33%) 5 (38%)    9 (34%) 6 (99%)    4 (1%)

6 (100%) 1 (45%)    9 (19%) 1 (91%)    7 (8%) 9 (64%)    5 (32%)

3 (93%)    1 (5%) 3 (88%)    7 (7%) 5 (100%) 8 (70%)    5 (30%)

8 (58%)    9 (26%) 0 (93%)    8 (7%) 0 (96%)    8 (3%) 8 (57%)    1 (19%)

7 (80%)    1 (11%) 7 (57%)    2 (27%) 2 (86%)    1 (14%) 2 (96%)    1 (4%)

Figure A.5: PENDIG clusters. 1500 (of 7494) samples of the handwritten nu-
merals 0-9 are illustrated arranged by clusters. Strong intra-class variation as
e.g., seen in the numeral 5 is disambiguated into several clusters: 5 can be
written like a ’S’ in one stroke from top to bottom or in two strokes with the
top dash last.
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A.4 Drugstore Data-set
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Figure A.6: Drugstore data before preprocessing. Distribution of profit mar-
gin (red, highest), revenue (blue, between), item count (green, lowest), and
profit margin (red) for 21672 active customers and 1379 purchased product
categories. Sorted by revenue per product (top) and per customer (bottom).
Total revenue on 543,744 items sold is $1,974,824.52 and total profit margin
is $908,302.88.
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Figure A.7: Drugstore data sample RETAIL. Margin/revenue/item count dis-
tribution for 762 selected product categories (top) and 2466 sampled customers
(bottom). Total revenue on 38,816 items sold is $126,899.03 and total profit
is $45,151.18.
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Customer with rank 333/2466

1 @ 4.99 CHRISTMAS GIFTWARE ITEMS 621

1 @ 2.95 AMERICAN GREETINGS CARDS ITEMS 1317

1 @ 1.49 CHRISTMAS CARDS ITEMS 74

3 @ 2.49 BASKET CANDY ITEMS 129

1 @ 6.19 MAYBELLINE EYE ITEMS 234

3 @ 1.99 CHRISTMAS WRAPPING PAPER ITEMS 118

1 @ 5.19 TAMPONS ITEMS 153

1 @ 5.99 CONDITIONER MIDDLE PRICE ITEMS 215

2 @ 1.69 VALENTINE BOX CANDY ITEMS 65

3 @ 0.99 CHRISTMAS GARLAND, ETC ITEMS 55

2 @ 0.29 CHRISTMAS BOWS, RIBBONS ITEMS 75

48 @ 0.19 CHRISTMAS CANDLES ITEMS 134

1 @ 9.99 APPLIANCES HAIR STYLERS ITEMS 56

1 @ 6.59 MAYBELLINE FACE ITEMS 228

2 @ 2.99 CHRISTMAS ORNAMENTS ITEMS 153

1 @ 0.64 SUMMER TOYS ITEMS 355

1 @ 0.89 GERMICIDAL ANTISEPTICS ITEMS 24

2 @ 2.24 VALENTINE BOX CARDS ITEMS 89

1 @ 4.59 FEM HY FEM PAIN ITEMS 21

1 @ 4.99 EXTENSION CORDS ITEMS 19

2 @ 1.72 NN KNEE HIGHS ITEMS 25

Customer with rank 867/2466

2 @ 11.04 FRAGRANCES OPEN STOCK ITEMS 361

2 @ 4.99 SHOWER GEL & BODY WASH ITEMS 313

1 @ 3.19 TOILET TISSUE ITEMS 50

4 @ 0.99 HALLOWEEN CANDLES/IMPORT ITEMS 78

Customer with rank 1419/2466

1 @ 8.19 VITAMINS MULTI ITEMS 155

1 @ 7.99 VITAMINS C ITEMS 129

1 @ 1.89 SCHOOL ACCESSORIES ITEMS 263

Customer with rank 2089/2466

1 @ 1.59 TAPE ITEMS 122

1 @ 4.99 TP PICTURE FRAMES/HANGERS ITEMS 1423

Table A.1: Exemplary market-baskets from drugstore data-set RETAIL.

185



A.5 Yahoo! News Data-set

Figure A.8: Exemplary news web-page from YAHOO data-set.
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A.6 20 Newsgroup Data-set

From: pjsinc@phoenix.oulu.fi (Petri Salonen)

Subject: Re: What does the .bmp format mean?

Michael Panayiotakis (louray@seas.gwu.edu) wrote:

: In article <robertsa@unix2.tcd.ie> (Andrew L. Roberts) writes:

: >What exactly does the windows bitmap format look like? I mean, how is

: >the data stored: width, height, no. of colours, bitmap data? I couldn’t

: >find anything in ths user manual, is there any other reference material

: >which would give me this information?

: Well, this is *only* a guess: If it goes by the "true" meaning of "bit

: map", then it holds (x,y,c) where x pixel number in th ex-direction, y:

: pixel-number in the y-dir, c: colour.

Come on fellows! The format is quite plainly explained in the manuals.

It’s in the "Programmer’s Reference, Volume 3: Messages, Structures,

and Macros" (MSC-Dev.kit for 3.1, should be also in the Borland’s

manuals) pages 232-241 (depending what you need).

First there is the BITMAPFILEHEADER-struct then the BITMAPINFO which

contains the BITMAPINFOHEADER and the RGBQUAD and then the bitmap

data. AND there is also a example among the example files (MS_SDK).

Hope this helps....

-----------------------------------------------------------------------------

########################## | Yes, I do have some prior knowledge in this.

########################## | There is nothing dangerous in these dragons,

#### / /// / | they are totally harmless... But my opinion

#### / / / /// /// | is that kicking them might not be the right

#### /// /// / / / /// / | way to test it. So shut up and RUN!

-----------------------------------------------------------------------------

pjsinc@sunrise.oulu.fi pjsinc@phoenix.oulu.fi pjsinc@tolsun.oulu.fi

If it’s possible that there are some opinions above, they must be all MINE.

Figure A.9: Exemplary newsgroup posting from N20 data-set.

187



Appendix B

Derivations

Beware of bugs in the above code; I have

only proved it correct, not tried it.

– Donald Knuth1

B.1 Normalized Symmetric Mutual Informa-

tion

Let X and Y be the random variables described by the cluster labeling λ and

category labeling κ, respectively. Let H(X) denote the entropy of a random

variable X. Mutual information between two random variables is defined as

I(X,Y ) = H(X) + H(Y ) − H(X,Y ). (B.1)

Also,

I(X,Y ) = H(X) − H(X|Y ) ≤ H(X) (B.2)

1In letter sent to Peter van Emde Boas, March 1977
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and

I(X,Y ) = H(X) − H(Y |X) ≤ H(Y ). (B.3)

So

I(X,Y ) ≤ min(H(X), H(Y )). (B.4)

Since min(H(X), H(Y )) ≤ H(X)+H(Y )
2

, a tight upper bound on I(X,Y ) is

given by H(X)+H(Y )
2

. Thus, a worst case upper bound for all possible labelings

A (with labels from 1 to k) and categorizations (with labels from 1 to g) is

given by

I(X,Y ) ≤ max
A∈{1,...,k},B∈{1,...,g}

(

H(A) + H(B)

2

)

. (B.5)

Hence, we define [0,1]-normalized mutual information-based quality as

NI(X,Y ) =
2 · I(X,Y )

maxA∈{1,...,k}(H(A)) + maxB∈{1,...,g}(H(B))
. (B.6)

Using

I(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x) · p(y)
, (B.7)

and approximating probabilities with frequency counts delivers our quality

measure φ(NMI):

φ(NMI)(λ, κ) =
2 · ∑k

ℓ=1

∑g
h=1

n
(h)
l

n
log

n
(h)
l

/n

(n(h)/n)·(nl/n)

log(k) + log(g)
(B.8)

Basic simplifications yield:

φ(NMI)(λ, κ) =
2

n

k
∑

ℓ=1

g
∑

h=1

n
(h)
ℓ logk·g

(

n
(h)
ℓ n

n(h)nℓ

)

(B.9)

This derivation is used to obtain equations 4.25 and 5.2.

Instead of using the worst case upper bound for all possible labelings

and categorizations, one can assume that the categorization priors are given.
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This allows a less aggressive denominator for normalization: One can use the

actual entropies H(X) and H(Y ) from the labelings in equation B.4. However,

this results in a bias towards high k.

Another variant of normalization uses the actual entropies H(X) and

H(Y ) instead of maxA∈{1,...,k}(H(A)) and maxB∈{1,...,g}(H(B)) in equation B.5.

For the results presented in this dissertation, we will use the worst case nor-

malization (equation B.9).

B.2 Normalized Asymmetric Mutual Informa-

tion

The entropy of either, clustering X and categorization Y , provides another

tight bound on mutual information I(X,Y ) that can be used for normalization.

Since the categorization Y is a stable, user given distribution, let’s consider

I(X,Y ) ≤ H(Y ). (B.10)

Hence, one can alternatively define [0,1]-normalized asymmetric mutual infor-

mation based quality as

NI(X,Y ) =
I(X,Y )

H(Y )
(B.11)

which translates into frequency counts as

φ(NAMI)(λ, κ) =

∑k
ℓ=1

∑g
h=1 n

(h)
ℓ log

n
(h)
ℓ

n

n(h)nℓ

−∑g
h=1 n(h) log n(h)

n

. (B.12)

Note that this definition of mutual information is asymmetric and does not

penalize overrefined clusterings λ. Also, φ(NAMI) is biased towards high k.
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