next up previous contents
Next: Author Vita Up: Relationship-based Clustering and Cluster Previous: Normalized Asymmetric Mutual Information   Contents

Bibliography

ABKS99
Michael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
OPTICS: ordering points to identify the clustering structure.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, Philadephia, Pennsylvania, USA, pages 49-60, 1999.

AK95
C. J. Alpert and A. B. Kahng.
Recent directions in netlist partitioning: A survey.
Integration: The VLSI Journal, 19:1-18, 1995.

Bar81
J. A. Barnett.
Computational methods for a mathematical theory of evidence.
In Proc. of IJCAI, pages 868-875, 1981.

BDSY99
Amir Ben-Dor, Ron Shamir, and Zohar Yakhini.
Clustering gene expression patterns.
Journal of Computational Biology, 6(3/4):281-297, 1999.

BEHW87
Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Occam's razor.
Information processing Letters, 24:377-380, 1987.

BFR98
P. S. Bradley, U. M. Fayyad, and C. Reina.
Scaling clustering algorithms to large databases.
In Knowledge Discovery and Data Mining, pages 9-15, 1998.

BG98
Kurt D. Bollacker and Joydeep Ghosh.
A supra-classifier architecture for scalable knowledge reuse.
In Proc. Int'l Conf. on Machine Learning (ICML-98), pages 64-72, July 1998.

BG99
Kurt D. Bollacker and Joydeep Ghosh.
Effective supra-classifiers for knowledge base construction.
Pattern Recognition Letters, 20(11-13):1347-52, November 1999.

BG01
A. Banerjee and J. Ghosh.
Clickstream clustering using weighted longest common subsequences.
In Workshop on Web Mining : 1st SIAM Conference on Data Mining, pages 33-40, April 2001.

BG02
A. Banerjee and J. Ghosh.
On scaling up balanced clustering algorithms.
In Proc. 2nd SIAM Intl. Conf. on Data Mining, Apr 2002.
In press.

BGG$^+$99
D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Partitioning-based clustering for web document categorization.
Decision Support Systems, 27:329-341, 1999.

BHR96
Michael W. Berry, Bruce Hendrickson, and Padma Raghavan.
Sparse matrix reordering schemes for browsing hypertext.
In Lectures in Applied Mathematics (LAM), volume 32, pages 99-123. American Mathematical Society, 1996.

Bis95
C. Bishop.
Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

BL97
M. J. A. Berry and G. Linoff.
Data Mining Techniques for Marketing, Sales and Customer Support.
Wiley, 1997.

BLM86
J. P. Barthelemy, B. Laclerc, and B. Monjardet.
On the use of ordered sets in problems of comparison and consensus of classifications.
Journal of Classification, 3:225-256, 1986.

BM98
A. Blum and T. Mitchell.
Combining labeled and unlabeled data with co-training.
In Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT-98), 1998.

Bre94
L. Breiman.
Bagging predictors.
Technical report, TR No. 421, University of California, Berkeley, 1994.

BY99
Ricardo Baeza-Yates.
Modern Information Retrieval.
Addison Wesley, New York, 1999.

Car95
Rich Caruana.
Learning many related tasks at the same time with backpropagation.
In Advances in Neural Information Processing Systems 7, pages 657-664, 1995.

CDF$^+$98
M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to extract symbolic knowledge from the world wide web.
In AAAI98, pages 509-516, 1998.

CG88
G. A. Carpenter and S. Grossberg.
The ART of adaptive pattern recognition by a self-organizing neural network.
IEEE Computer, 21(3):77-90, 1988.

CG96
S. V. Chakaravathy and J. Ghosh.
Scale based clustering using a radial basis function network.
IEEE Transactions on Neural Networks, 2(5):1250-61, Sept 1996.

CG01
K. Chang and J. Ghosh.
A unified model for probabilistic principal surfaces.
IEEE Trans. PAMI, 23(1):22-41, Jan 2001.

Che99
Chaomei Chen.
Visualising semantic spaces and author co-citation networks in digital libraries.
Information Processing and Management, 35:401-420, 1999.

CKPT92
Douglass R. Cutting, David Karger, Jan O. Pedersen, and John W. Tukey.
Scatter/gather: A cluster-based approach to browsing large document collections.
In Proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 318-329, 1992.

CS95
P. Chan and S. Stolfo.
A comparative evaluation of voting and meta-learning on partitioned data.
In Twelfth International Conference on Machine Learning, pages 90-98, 1995.

CS96
Peter Cheeseman and John Stutz.
Bayesian classification (AutoClass): Theory and results.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 153-180. AAAI/MIT Press, 1996.

CT91
Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory.
Wiley, 1991.

Das94
B. Dasarathy.
Decision Fusion.
IEEE CS Press, Los Alamitos, CA, 1994.

DCJ$^+$94
H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik.
Boosting and other ensemble methods.
Neural Computation, 6(6):1289-1301, 1994.

DDL$^+$90
Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman.
Indexing by latent semantic analysis.
Journal of the American Society of Information Science, 41(6):391-407, 1990.

DH73
R. O. Duda and P. E. Hart.
Pattern Classification and Scene Analysis.
Wiley, New York, 1973.

DHS01
R. O. Duda, P. E. Hart, and D. G. Stork.
Pattern Classification (2nd Ed.).
Wiley, New York, 2001.

Die01
T. G. Dietterich.
Ensemble methods in machine learning.
In J. Kittler and F. Roli, editors, Multiple Classifier Systems, pages 1-15. LNCS Vol. 1857, Springer, 2001.

DLR77
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Series B (Methodological), 39(1):1-38, 1977.

DM01
Inderjit S. Dhillon and Dharmendra S. Modha.
Concept decompositions for large sparse text data using clustering.
Machine Learning, 42(1):143-175, January 2001.

DMS98
Inderjit S. Dhillon, Dharmendra S. Modha, and W. Scott Spangler.
Visualizing class structure of multidimensional data.
In S. Weisberg, editor, Proceedings of the 30th Symposium on the Interface: Computing Science and Statistics, Minneapolis, MN, May 13-16 1998, 1998.

EH81
B. S. Everitt and D. J. Hand.
Finite Mixture Distributions.
Chapman and Hall, London, 1981.

EKSX96
M. Ester, H. Kriegel, J. Sander, and X. Xu.
A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of 2nd International Conference on KDD, pages 226-231, 1996.

ESBB98
Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein.
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. USA, 95:14863-14868, December 1998.

Eve74
Brian Everitt.
Cluster Analysis.
Heinemann Educational Books, London, 1974.

FBY92
W. B. Frakes and R. Baeza-Yates.
Information Retrieval : Data Structures and Algorithms.
Prentice-Hall, New Jersey, 1992.

Fie73
M. Fiedler.
Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal, 23:298-305, 1973.

Fie75
M. Fiedler.
A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.
Czechoslovak Mathematical Journal, 25:619-633, 1975.

Fis87a
Douglas Fisher.
Cobweb: Knowledge acquisition via conceptual clustering.
Machine Learning, 2:139-172, 1987.

Fis87b
Douglas Fisher.
Improving inference through conceptual clustering.
In National Conference on Artificial Intelligence, pages 461-465, 1987.

FL95
C. Faloutsos and K. Lin.
Fastmap: a fast algorithm for indexing, data mining and visualization of traditional and multimedia datasets.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose, CA, pages 163-174. ACM, 1995.

FM82
C. M. Fiduccia and R. M. Mattheyses.
A linear time heuristic for improving network partitions.
In Proceedings of the 19th IEEE/ACM Design Automation Conference, pages 175-181, 1982.

Fra92
W. Frakes.
Stemming algorithms.
In W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures and Algorithms, pages 131-160. Prentice Hall, New Jersey, 1992.

FRB98
U. M. Fayyad, C. Reina, and P. S. Bradley.
Initialization of iterative refinement clustering algorithms.
In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages 194-198. AAAI Press, August 1998.

Fri94
J. H. Friedman.
An overview of predictive learning and function approximation.
In V. Cherkassky, J.H. Friedman, and H. Wechsler, editors, From Statistics to Neural Networks, Proc. NATO/ASI Workshop, pages 1-61. Springer Verlag, 1994.

Fuk72
K. Fukanaga.
Introduction to Statistical Pattern Recognition.
Academic Press, New York, 1972.

GBC92
J. Ghosh, S. Beck, and C. C. Chu.
Evidence combination techniques for robust classification of short-duration oceanic signals.
In SPIE Conf. on Adaptive and Learning Systems, SPIE Proc. Vol. 1706, pages 266-276, Orlando, Fl., April 1992.

GC85
M. A. Gluck and J. E. Corter.
Information, uncertainty, and the utility of categories.
In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pages 283-287, Irvine, CA, 1985. Lawrence Erlbaum Associates.

GCSR95
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis.
Chapman and Hall, London, 1995.

GG01
G. K. Gupta and J. Ghosh.
Detecting seasonal trends and cluster motion visualization for very high dimensional transactional data.
In Proc. First Siam Conf. On Data Mining, (SDM2001), pages 115-129, 2001.

GI89
D. R. Gusfield and R. W. Irving.
The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge, MA, 1989.

GJ79
Michael R. Garey and David S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman, San Francisco, CA, 1979.

GMT95
J. R. Gilbert, G. L. Miller, and S. Teng.
Geometric mesh partitioning: Implementation and experiments.
In Proceedings of the 9th International Parallel Processing Symposium, pages 418-427. IEEE, April 1995.

Gra89
C. W. J. Granger.
Combining forecasts-twenty years later.
Journal of Forecasting, 8(3):167-173, 1989.

GRS98
S. Guha, R. Rastogi, and K. Shim.
Cure: An efficient clustering algorithm for large databases.
In Proceedings of ACM SIGMOD International Conference on Management of Data, pages 73-84, New York, 1998.

GRS99
S. Guha, R. Rastogi, and K. Shim.
Rock: a robust clustering algorithm for categorical attributes.
In Proceedings of the 15th International Conference on Data Engineering, 1999.

GS02
Joydeep Ghosh and Alexander Strehl.
Clustering and visualization of retail market baskets.
In N. R. Pal and L. Jain, editors, Knowledge Discovery in Advanced Information Systems, AIP. Springer, 2002.
In press.

GSG99
Gunjan K. Gupta, Alexander Strehl, and Joydeep Ghosh.
Distance based clustering of association rules.
In Proc. ANNIE 1999, St. Louis, volume 9, pages 759-764. ASME, November 1999.

Har75
John A. Hartigan.
Clustering Algorithms.
Wiley, New York, 1975.

Has93
S. Hashem.
Optimal Linear Combinations of Neural Networks.
PhD thesis, Purdue University, December 1993.

Hay99
S. Haykin.
Neural Networks: A Comprehensive Foundation.
2nd edition, Prentice-Hall, New Jersey, 1999.

HJ97
P. Hansen and B. Jaumard.
Cluster analysis and mathematical programming.
Math. Programming, 79:191-215, 1997.

HK00
J. Han and M. Kamber.
Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

HKKM97
E. Han, G. Karypis, V. Kumar, and B. Mobasher.
Clustering in a highdimensional space using hypergraph models.
Technical Report 97-019, University of Minnesota, Department of Computer Science, 1997.

HKLK97
Timo Honkela, Samuel Kaski, Krista Lagus, and Teuvo Kohonen.
WEBSOM--self-organizing maps of document collections.
In Proceedings of WSOM'97, Workshop on Self-Organizing Maps, Espoo, Finland, June 4-6, pages 310-315. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland, 1997.

HKT01
J. Han, M. Kamber, and A. K. H. Tung.
Spatial clustering methods in data mining: A survey.
Geographic Data Mining and Knowledge Discovery, 2001.

HL94
B. Hendrickson and R. Leland.
The Chaco user's guide -- version 2.0.
Technical Report SAND94-2692, Sandia National Laboratories, 1994.

HL95
B. Hendrickson and R. Leland.
An improved spectral graph partitioning algorithm for mapping parallel computations.
SIAM Journal on Scientific Computing, 16(2):452-469, 1995.

Hub81
P. J. Huber.
Robust Statistics.
Wiley, New York, 1981.

Ind99
Piotr Indyk.
A sublinear-time approximation scheme for clustering in metric spaces.
In Proceedings of the 40th Symposium on Foundations of Computer Science, 1999.

JD88
A. K. Jain and R. C. Dubes.
Algorithms for Clustering Data.
Prentice Hall, New Jersey, 1988.

JH99
T. S. Jaakkola and D. Haussler.
Exploiting generative models in discriminative classifiers.
In M. S. Kearns, S. A. Solla, and D. D. Cohn, editors, Advances in Neural Information Processing Systems (NIPS), volume 11, pages 487-493. MIT Press, 1999.

JK99
E. Johnson and H. Kargupta.
Collective, hierarchical clustering from distributed, heterogeneous data.
In M. Zaki and C. Ho, editors, Large-Scale Parallel KDD Systems, volume 1759 of Lecture Notes in Computer Science, pages 221-244. Springer-Verlag, 1999.

JMF99
A. K. Jain, M. N. Murty, and P. J. Flynn.
Data clustering: a review.
ACM Computing Surveys, 31(3):264-323, 1999.

Joa98
T. Joachims.
Text categorization with support vector machines: Learning with many relevant features.
In Machine Learning: ECML-98, Tenth European Conference on Machine Learning, pages 137-142, 1998.

KAKS97
George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar.
Multilevel hypergraph partitioning: Applications in VLSI domain.
In Proceedings of the Design and Automation Conference, 1997.

KC00
H. Kargupta and P. Chan, editors.
Advances in Distributed and Parallel Knowledge Discovery.
AAAI/MIT Press, Cambridge, MA, 2000.

KG99
S. Kumar and J. Ghosh.
GAMLS: A generalized framework for associative modular learning systems.
In Proceedings of the Applications and Science of Computational Intelligence II, pages 24-34, Orlando, Florida, 1999.

KHK99
George Karypis, Eui-Hong Han, and Vipin Kumar.
Chameleon: Hierarchical clustering using dynamic modeling.
IEEE Computer, 32(8):68-75, August 1999.

KHSJ01
H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson.
Distributed clustering using collective principal component analysis.
Knowledge and Information Systems Journal Special Issue on Distributed and Parallel Knowledge Discovery, 3:422-448, 2001.

KK96
Daniel A. Keim and Hans-Peter Kriegel.
Visualization techniques for mining large databases: A comparison.
IEEE Transactions on Knowledge and Data Engineering, 8(6):932-938, 1996.
Special Issue on Data Mining.

KK98a
G. Karypis and V. Kumar.
A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal of Scientific Computing, 20(1):359-392, 1998.

KK98b
G. Karypis and V. Kumar.
A parallel algorithm for multilevel graph-partitioning and sparse matrix ordering.
Journal of Parallel and Distributed Computing, 48(1):71-95, 1998.

KL70
B. Kernighan and S. Lin.
An efficient heuristic procedure for partitioning graphs.
Bell Systems Technical Journal, 49:291-307, 1970.

KLF01
Branko Kavsek, Nada Lavrac, and Anuska Ferligoj.
Consensus decision trees: Using consensus hierarchical clustering for data relabelling and reduction.
In Proceedings of ECML 2001, volume 2167 of LNAI, pages 251-262. Springer, 2001.

Koh90
Teuvo Kohonen.
The self-organizing map.
Proc. IEEE, 78(9):1464-80, Sept 1990.

Koh95
Teuvo Kohonen.
Self-Organizing Maps.
Springer, Berlin, Heidelberg, 1995.
(Second Extended Edition 1997).

Kol97
T. Kolda.
Limited-Memory Matrix Methods with Applications.
PhD thesis, University of Maryland, College Park, 1997.

KPHJ99
H. Kargupta, B. Park, D. Hershberger, and E. Johnson.
Collective data mining: A new perspective toward distributed data mining.
In Hillol Kargupta and Philip Chan, editors, Advances in Distributed and Parallel Knowledge Discovery. MIT/AAAI Press, 1999.

KR90
L. Kaufmann and P. Rousseeuw.
Finding Groups in Data: an Introdution to Cluster Analysis.
John Wiley and Sons, 1990.

Kum00
Shailesh Kumar.
Modular Learning Through Output Space Decomposition.
PhD thesis, The University of Texas at Austin, December 2000.

KV95
A. Krogh and J. Vedelsby.
Neural network ensembles, cross validation and active learning.
In D. S. Touretzky G. Tesauro and T. K. Leen, editors, Advances in Neural Information Processing Systems-7, pages 231-238, 1995.

KW99
J. Kim and T. Warnow.
Tutorial on phylogenetic tree estimation.
In Intelligent Systems for Molecular Biology, Heidelberg, 1999.

KWY95
S. Kannan, T. Warnow, and S. Yooseph.
Computing the local consensus of trees.
In Association for Computing Machinery and the Society of Industrial Applied Mathematics, Proceedings, ACM/SIAM Symposium on Discrete Algorithms, pages 68-77, 1995.

Lan95
Ken Lang.
Newsweeder: Learning to filter netnews.
In International Conference on Machine Learning, pages 331-339, 1995.

Law01
R. D. Lawrence et al.
Personalization of supermarket product recommendations.
Data Mining and Knowledge Discovery, 4(1/2):11-32, 2001.

Lew92
D. D. Lewis.
Feature selection and feature extraction for text categorization.
In Proceedings of Speech and Natural Language Workshop, pages 212-217, San Mateo, California, February 1992. Morgan Kaufmann.

MC85
G. W. Milligan and M. C. Cooper.
An examination of procedures for determining the number of clusters in a data set.
Psychometrika, 50:159-179, 1985.

Meh99
Mala Mehrotra.
Multi-viewpoint clustering analysis (MVP-CA) technology for mission rule set development and case-based retrieval.
Technical Report AFRL-VS-TR-1999-1029, Air Force Research Laboratory, 1999.

Mil81
G. W. Milligan.
A review of Monte Carlo tests of cluster analysis.
Multivariate Behavioral Research, 16:379-407, 1981.

Mir01
Boris Mirkin.
Reinterpreting the category utility function.
Machine Learning, 42(2):219-228, November 2001.

Mit97
Tom M. Mitchell.
Machine Learning.
McGraw-Hill, 1997.

MJ95
J. Mao and A. K. Jain.
Artificial neural networks for feature extraction and multivariate data projection.
IEEE Trans. on Neural Networks, 6(2):296-317, March 1995.

MMK01
Ion Muslea, Steve Minton, and Craig Knoblock.
Selective sampling + semi-supervised learning = robust multi-view learning.
In IJCAI-2001 Workshop on Text Learning Beyond Supervision, 2001.

MMR97
K. Mehrotra, C. Mohan, and S. Ranka.
Elements of Artificial Neural Networks.
MIT Press, Cambridge, Massachusetts, 1997.

MN98
A. McCallum and K. Nigam.
A comparison of event models for naive bayes text classification.
In AAAI-98 Workshop on Learning for Text Categorization, 1998.

MR99
Raymond J. Mooney and Loriene Roy.
Content-based book recommending using learning for text categorization.
In Proceedings pf the SIGIR-99 Workshop on Recommender Systems: Algorithms and Evaluation, pages 195-204, 1999.

MS00
Dharmendra S. Modha and W. Scott Spangler.
Clustering hypertext with applications to web searching.
In Proceedings of the ACM Hypertext 2000 Conference, San Antonio, TX, May 30-June 3, 2000.

Mur85
Fionn Murtagh.
Multidimensional Clustering Algorithms.
Physica-Verlag, Heidelberg and Vienna, 1985.

NG00
K. Nigam and R. Ghani.
Analyzing the applicability and effectiveness of co-training.
In Proceedings of CIKM-00, 9th ACM International Conference on Information and Knowledge Management, pages 86-93. ACM, 2000.

NH94
Raymond T. Ng and Jiawei Han.
Efficient and effective clustering methods for spatial data mining.
In Proceedings of the 20th VLDB Conference, Santiago Chile, pages 144-155, 1994.

Nie81
H. Niemann.
Pattern Analysis.
Springer, Berlin, 1981.

NMTM98
K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
Learning to classify text from labeled and unlabeled documents.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 792-799. AAAI Press, 1998.

NN86a
D. A. Neumann and V. T. Norton.
Clustering and isolation in the consensus problem for partitions.
Journal of Classification, 3:281-298, 1986.

NN86b
D. A. Neumann and V. T. Norton.
On lattice consensus methods.
Journal of Classification, 3:225-256, 1986.

PCS00
A. Prodromidis, P. Chan, and S. Stolfo.
Meta-learning in distributed data mining systems: Issues and approaches.
In H. Kargupta and P. Chan, editors, Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press, Cambridge, MA, 2000.

Per93
M. P. Perrone.
Improving Regression Estimation: Averaging Methods for Variance Reduction with Extensions to General Convex Measure Optimization.
PhD thesis, Brown University, May 1993.

PPS01
C. Perlich, F. Provost, and J. Simonoff.
Tree induction vs. logistic regression: A learning-curve analysis.
Technical Report IS-01-02, Stern School of Business, New York University, 2001.
CeDER Working Paper.

Pra94
Lorien Y. Pratt.
Experiments on the transfer of knowledge between neural networks.
In S. Hanson, G. Drastal, and R. Rivest, editors, Computational Learning Theory and Natural Learning Systems, Constraints and Prospects, chapter 19, pages 523-560. MIT Press, 1994.

Pri94
C. E. Priebe.
Adaptive mixtures.
Journal of the American Statistical Association, 89:796-806, 1994.

PSL90
A. Pothen, H. Simon, and K. Liou.
Partitioning sparse matrices with eigenvectors of graphs.
SIAM Journal of Matrix Analysis and Applications, 11:430-452, 1990.

Rag01
Thomas Ragg.
Building committees by clustering models based on pairwise similarity values.
In Proc. ECML 2001, volume 2167 of LNAI, pages 406-418. Springer, 2001.

Ras92
E. Rasmussen.
Clustering algorithms.
In W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures and Algorithms, pages 419-442. Prentice Hall, New Jersey, 1992.

RL91
M. D. Richard and R. P. Lippmann.
Neural network classifiers estimate bayesian a posteriori probabilities.
Neural Computation, 3(4):461-483, 1991.

RS99
Rajeev Rastogi and Kyuseok Shim.
Scalable algorithms for mining large databases.
In Jiawei Han, editor, KDD-99 Tutorial Notes. ACM, 1999.

SA99
Alexander Strehl and J. K. Aggarwal.
Detecting moving objects in airborne forward looking infra-red sequences.
In Proc. IEEE Workshop on Computer Vision Beyond the Visible Spectrum (CVPR 1998), Fort Collins, pages 3-12. IEEE, June 1999.

SA00a
Alexander Strehl and J. K. Aggarwal.
MODEEP: A motion-based object detection and pose estimation method for airborne FLIR sequences.
Machine Vision and Applications, 11(6):267-276, 2000.

SA00b
Alexander Strehl and J. K. Aggarwal.
A new Bayesian relaxation framework for the estimation and segmentation of multiple motions.
In Proc. IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI 2000), Austin, pages 21-25. IEEE, April 2000.

Sal89
Gerard Salton.
Automatic text processing: the transformation, analysis, and retrieval of information by computer.
Addison-Wesley (Reading MA), 1989.

SB88
Gerard Salton and Chris Buckley.
Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513-523, 1988.

SG00a
Alexander Strehl and Joydeep Ghosh.
Clustering guidance and quality evaluation using relationship-based visualization.
In Proc. ANNIE 2000, St. Louis, volume 10, pages 483-488. ASME, November 2000.

SG00b
Alexander Strehl and Joydeep Ghosh.
A scalable approach to balanced, high-dimensional clustering of market-baskets.
In Proc. HiPC 2000, Bangalore, volume 1970 of LNCS, pages 525-536. Springer, December 2000.

SG00c
Alexander Strehl and Joydeep Ghosh.
Value-based customer grouping from large retail data-sets.
In Proc. SPIE Conference on Data Mining and Knowledge Discovery, Orlando, volume 4057, pages 33-42. SPIE, April 2000.

SG01
Alexander Strehl and Joydeep Ghosh.
Relationship-based visualization of high-dimensional data clusters.
In Proc. Workshop on Visual Data Mining (KDD 2001), San Francisco, pages 90-99. ACM, August 2001.

SG02a
Alexander Strehl and Joydeep Ghosh.
Cluster ensembles - a knowledge reuse framework for combining partitionings.
In Proc. AAAI 2002, Edmonton. AAAI/MIT Press, July 2002.
In press.

SG02b
Alexander Strehl and Joydeep Ghosh.
Relationship-based clustering and visualization for high-dimensional data mining.
INFORMS Journal on Computing, 2002.
In press.

SGM00
Alexander Strehl, Joydeep Ghosh, and Raymond J. Mooney.
Impact of similarity measures on web-page clustering.
In Proc. AAAI Workshop on AI for Web Search (AAAI 2000), Austin, pages 58-64. AAAI/MIT Press, July 2000.

Sha96
A. Sharkey.
On combining artificial neural networks.
Connection Science, 8(3/4):299-314, 1996.

SKK99
K. Schloegel, G. Karypis, and V. Kumar.
Parallel multilevel algorithms for multi-constraint graph partitioning.
Technical Report 99-031, Dept of Computer Sc. and Eng, Univ. of Minnesota, 1999.

SKK00
M. Steinbach, G. Karypis, and V. Kumar.
A comparison of document clustering techniques.
In KDD Workshop on Text Mining, 2000.

SM96
D. Silver and R. Mercer.
The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness.
Connection Science Special Issue: Transfer in Inductive Systems, 1996.

Smy96
Padhraic Smyth.
Clustering using Monte Carlo cross-validation.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, pages 126-133. AAAI Press, 1996.

Spe06
C. Spearman.
Footrule' for measuring correlations.
British Journal of Psychology, 2:89-108, July 1906.

SS97
H. Schutze and H. Silverstein.
Projections for efficient document clustering.
In Proceedings of SIGIR'97, Philadelphia, pages 74-81, 1997.

ST00
N. Slonim and N. Tishby.
Agglomerative information bottleneck.
In Proc. of NIPS-12, 1999, pages 617-623. MIT Press, 2000.

Str88
Gilbert Strang.
Linear Algebra and its Applications, 3rd edition.
Harcourt Brace Janovich, Orlando, FL, 1988.

Str98
Alexander Strehl.
A new Bayesian relaxation algorithm for motion estimation and segmentation in the presence of two affine motions.
Master's thesis, The University of Texas at Austin, August 1998.

SWY75
G. Salton, A. Wong, and C. Yang.
A vector space model for automatic indexing.
Communications of the ACM, 18(11):613-620, 1975.

TG96
K. Tumer and J. Ghosh.
Analysis of decision boundaries in linearly combined neural classifiers.
Pattern Recognition, 29(2):341-348, 1996.

TG99
K. Tumer and J. Ghosh.
Linear and order statistics combiners for pattern classification.
In A. Sharkey, editor, Combining Artificial Neural Nets, pages 127-162. Springer-Verlag, 1999.

Thr96
S. Thrun.
Explanation-based neural network learning: A lifelong learning approach.
Machine Learning, 8:323-339, 1996.

TO96
Sebastian Thrun and Joseph O'Sullivan.
Discovering structure in multiple learning tasks: The TC alogorithm.
In The 13th International Conference on Machine Learning, pages 489-497, 1996.

Tor52
W. S. Torgerson.
Multidimensional scaling, i: theory and method.
Psychometrika, 17:401-419, 1952.

TP97
S. Thrun and L. Y. Pratt.
Learning To Learn.
Kluwer Academic, Norwell, MA, 1997.

Tuf83
Edward R. Tufte.
The Visual Display of Quantitative Information.
Graphics Press, Cheshire, Connecticut, 1983.

Vap95
Vladimir Vapnik.
The Nature of Statistical Learning Theory.
Springer, 1995.

vR79
C. J. van Rijsbergen.
Information Retrieval.
Buttersworth, London, 1979.

Wat69
S. Watanabe.
Knowing and Guessing - A Formal and Quantative Study.
John Wiley and Sons Inc., 1969.

Wil88
P. Willet.
Recent trends in hierarchical document clustering: a criticial review.
Information Processing and Management, 24(5):577-597, 1988.

Wol92
D. H. Wolpert.
Stacked generalization.
Neural Networks, 5:241-259, 1992.

Yan99
Y. Yang.
An evaluation of statistical approaches to text categorization.
Journal of Information Retrieval, 1(1/2):67-88, May 1999.

YC74
T. Y. Young and T. W. Calvert.
Classification, Estimation and Pattern Recognition.
Elsevier, New York, 1974.

YP97
Y. Yang and J. O. Pedersen.
A comparative study on feature selection in text categorization.
In Proceedings of the 14th International Conference on Machine Learning, pages 412-420. Morgan Kaufmann, 1997.

ZE98
Oren Zamir and Oren Etzioni.
Web document clustering: A feasibility demonstration.
In Proceedings of the 21st Annual International ACM SIGIR Conference, pages 46-54, 1998.

Zip29
George Kingsley Zipf.
Relative frequency as a determinant of phonetic change.
Reprinted from the Harvard Studies in Classical Philiology, XL, 1929.

ZK01
Ying Zhao and George Karypis.
Criterion functions for document clustering: Experiments and analysis.
Technical Report 01-40, University of Minnesota, 2001.

ZRL97
T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH: A new data clustering algorithm and its applications.
Data Mining and Knowledge Discovery, 1(2):141-182, 1997.



Alexander Strehl 2002-05-03